The Value of Myocardial Fibrosis Parameters Derived from Cardiac Magnetic Resonance Imaging in Risk Stratification for Patients with Hypertrophic Cardiomyopathy

医学 肥厚性心肌病 内科学 心脏病学 磁共振成像 队列 心脏磁共振成像 心源性猝死 回顾性队列研究 逻辑回归 接收机工作特性 心肌病 危险分层 弗雷明翰风险评分 心脏磁共振 放射科 心力衰竭 疾病
作者
Taihui Yu,Zhaoxi Cai,Zehong Yang,Wenhao Lin,Yun Su,Jixin Li,Shuanglun Xie,Jun Shen
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (9): 1962-1978 被引量:12
标识
DOI:10.1016/j.acra.2022.12.026
摘要

Rationale and Objectives

The aim of the study was to determine whether myocardial fibrosis parameters of cardiac magnetic resonance imaging (MRI) has added value in the risk stratification of hypertrophic cardiomyopathy (HCM) patients.

Materials and Methods

In this retrospective study, 108 patients with HCM (mean age ± standard deviation, 55.5 ± 13.4 years) were included from January 2019 to April 2022, and were followed up for 2 years to record sudden cardiac death (SCD) adverse events. All HCM patients underwent cardiac MRI and were divided into a training cohort (n = 81; mean age, 56.1 ± 13.0 years) and a validation cohort (n = 27; mean age, 57.8 ± 13.9 years). According to the presence of SCD risk factors defined by the 2020 AHA/ACC guidelines, HCM patients were classified into low-risk and high-risk groups. Cardiac MRI features, including late gadolinium enhancement (LGE), T1 mapping, and extracellular volume fraction (ECV), were assessed and compared between the two groups. Logistic regression analysis was used to select the optimal predictors of SCD from cardiac MRI features and HCM Risk-SCD score to construct prediction models. Receiver operating curve (ROC) analysis was used to assess the predictive performance of the constructed prediction model. Cox regression analysis was also used to determine the optimal predictors of SCD adverse events.

Results

Multivariate logistic analysis showed that the global ECV was the single myocardial fibrosis parameter predictive of the risk of SCD (p < 0.001). The areas under the ROC curves (AUC) of global ECV were higher than those of LGE, global native T1, global postcontrast T1, and HCM Risk-SCD (AUC = 0.85 vs. 0.74, 0.77, 0.63, 0.78). An integrative risk stratification model combining global ECV (odds ratio, 1.36 [95% CI: 1.16–1.60]; p < 0.001) and HCM Risk-SCD score (odds ratio, 1.63 [95% CI: 1.08–2.47]; p < 0.001) achieved an AUC of 0.89 (95% CI: 0.81-0.96) in the training cohort, which was significantly higher than that of HCM Risk-SCD score alone (p = 0.03). The AUC of the integrative model was 0.93 (95% CI: 0.84–1.00) in the validation cohort. Multivariate Cox regression analysis also showed that the global ECV was an independent predictor of SCD adverse events (hazard ratio, 1.27 [95% CI: 1.10–1.47]).

Conclusion

The ECV derived from cardiac MRI is comparable to the HCM Risk-SCD scale in predicting the SCD risk stratification in patients with HCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小雨完成签到 ,获得积分10
刚刚
燃燃发布了新的文献求助10
刚刚
高贵紫丝发布了新的文献求助10
刚刚
刚刚
刚刚
Xxjj完成签到,获得积分10
1秒前
1秒前
李禾和完成签到,获得积分10
1秒前
取个名儿吧完成签到,获得积分10
1秒前
骆驼顶顶完成签到,获得积分10
1秒前
轻舞飞扬发布了新的文献求助10
2秒前
2秒前
拼搏的笑发布了新的文献求助10
2秒前
2秒前
lulu发布了新的文献求助10
2秒前
2秒前
恩典发布了新的文献求助10
3秒前
Cecilia完成签到,获得积分10
4秒前
壮壮发布了新的文献求助10
4秒前
Owen应助默默戎采纳,获得10
4秒前
4秒前
学术小菜鸟完成签到,获得积分10
4秒前
韩谷子完成签到 ,获得积分10
4秒前
5秒前
Re0pen发布了新的文献求助10
5秒前
王梓磬完成签到,获得积分10
6秒前
6秒前
852应助Mona采纳,获得10
6秒前
6秒前
wanci应助刘能采纳,获得10
6秒前
7秒前
科研通AI6应助kyfg采纳,获得10
7秒前
shanshan__完成签到,获得积分10
7秒前
生动的沧海完成签到,获得积分10
7秒前
田様应助coups哒嘟采纳,获得10
7秒前
小二郎应助Mody采纳,获得10
7秒前
8秒前
8秒前
酷波er应助漂亮的千万采纳,获得10
8秒前
wjy完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477701
求助须知:如何正确求助?哪些是违规求助? 4579485
关于积分的说明 14369133
捐赠科研通 4507697
什么是DOI,文献DOI怎么找? 2470120
邀请新用户注册赠送积分活动 1457068
关于科研通互助平台的介绍 1431055