冷冻固定
毛状体
超微结构
生物
大麻酚
生物物理学
透射电子显微镜
脂滴
植物
细胞生物学
大麻素
纳米技术
生物化学
材料科学
受体
作者
Samuel J. Livingston,Eva Yi Chou,Teagen D. Quilichini,Jonathan E. Page,Lacey Samuels
摘要
Abstract Cannabis glandular trichomes produce and store an abundance of lipidic specialised metabolites (e.g. cannabinoids and terpenes) that are consumed by humans for medicinal and recreational purposes. Due to a lack of genetic resources and inherent autofluorescence of cannabis glandular trichomes, our knowledge of cannabinoid trafficking and secretion is limited to transmission electron microscopy (TEM). Advances in cryofixation methods has resulted in ultrastructural observations closer to the ‘natural state’ of the living cell, and recent reports of cryofixed cannabis trichome ultrastructure challenge the long‐standing model of cannabinoid trafficking proposed by ultrastructural reports using chemically fixed samples. Here, we compare the ultrastructural morphology of cannabis glandular trichomes preserved using conventional chemical fixation and ultrarapid cryofixation. We show that chemical fixation results in amorphous metabolite inclusions surrounding the organelles of glandular trichomes that were not present in cryofixed samples. Vacuolar morphology in cryofixed samples exhibited homogenous electron density, while chemically fixed samples contained a flocculent electron dense periphery and electron lucent lumen. In contrast to the apparent advantages of cryopreservation, fine details of cell wall fibre orientation could be observed in chemically fixed glandular trichomes that were not seen in cryofixed samples. Our data suggest that chemical fixation results in intracellular artefacts that impact the interpretation of lipid production and trafficking, while enabling greater detail of extracellular polysaccharide organisation.
科研通智能强力驱动
Strongly Powered by AbleSci AI