Developing gasification process of polyethylene waste by utilization of response surface methodology as a machine learning technique and multi-objective optimizer approach

响应面法 合成气 聚乙烯 木材气体发生器 中心组合设计 工艺工程 燃烧热 材料科学 产量(工程) 二氧化碳 环境科学 废物管理 计算机科学 机器学习 化学 复合材料 工程类 有机化学 燃烧
作者
Rezgar Hasanzadeh,Parisa Mojaver,Taher Azdast,Shahram Khalilarya,Ata Chitsaz
出处
期刊:International Journal of Hydrogen Energy [Elsevier BV]
卷期号:48 (15): 5873-5886 被引量:4
标识
DOI:10.1016/j.ijhydene.2022.11.067
摘要

This study set out to evaluate the performance of response surface methodology as a machine learning technique on gasification process of polyethylene waste. Different models were developed for predicting gas yield, cold gas efficiency, carbon dioxide emission and lower heating value of syngas in gasification of polyethylene waste using response surface methodology. The accuracy and validity of these models were checked in comparison with the results obtained from the validated model. Most studies in the field of response surface methodology have only focused on its application for multi-objective optimization and largely have ignored its utilization as a machine learning technique. Central composite design was utilized to develop a model between the variables and the responses. Pressure and temperature of the gasifier, moisture content of polyethylene and equivalence ratio were the variables and the responses were gas yield, cold gas efficiency, carbon dioxide emission and lower heating value of syngas. The findings revealed that root mean square errors of the models developed by response surface methodology were 0.235, 0.438, 0.294 and 1.999 indicating their high validity. Finally, multi-objective optimization of polyethylene waste gasification was carried out using response surface methodology resulting in gas yield of 96.29 g/mol, cold gas efficiency of 76.22%, carbon dioxide emission of 4.66 g/mol and lower heating value of 493.44 kJ/mol. The optimum responses were predicted by response surface methodology with errors smaller than 5%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
iNk应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
小马同学应助科研通管家采纳,获得10
刚刚
无脚鸟发布了新的文献求助10
刚刚
慕青应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
风中冰香应助肥仔采纳,获得20
1秒前
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
1秒前
wanci应助科研通管家采纳,获得10
2秒前
hang完成签到,获得积分10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
GingerF应助ckk采纳,获得50
2秒前
Owen应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
111发布了新的文献求助20
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
3秒前
3秒前
影子芳香发布了新的文献求助10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
Lny应助lchoxy采纳,获得10
3秒前
魔幻大叔完成签到,获得积分10
4秒前
三毛发布了新的文献求助10
4秒前
大宝剑3号完成签到 ,获得积分10
4秒前
小猴子完成签到,获得积分10
5秒前
慈祥的花瓣完成签到,获得积分10
5秒前
清秀苗条发布了新的文献求助10
5秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257403
求助须知:如何正确求助?哪些是违规求助? 4419507
关于积分的说明 13756551
捐赠科研通 4292770
什么是DOI,文献DOI怎么找? 2355654
邀请新用户注册赠送积分活动 1352106
关于科研通互助平台的介绍 1312849