Developing gasification process of polyethylene waste by utilization of response surface methodology as a machine learning technique and multi-objective optimizer approach

响应面法 合成气 聚乙烯 木材气体发生器 中心组合设计 工艺工程 燃烧热 材料科学 产量(工程) 二氧化碳 环境科学 废物管理 计算机科学 机器学习 化学 复合材料 工程类 有机化学 燃烧
作者
Rezgar Hasanzadeh,Parisa Mojaver,Taher Azdast,Shahram Khalilarya,Ata Chitsaz
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:48 (15): 5873-5886 被引量:4
标识
DOI:10.1016/j.ijhydene.2022.11.067
摘要

This study set out to evaluate the performance of response surface methodology as a machine learning technique on gasification process of polyethylene waste. Different models were developed for predicting gas yield, cold gas efficiency, carbon dioxide emission and lower heating value of syngas in gasification of polyethylene waste using response surface methodology. The accuracy and validity of these models were checked in comparison with the results obtained from the validated model. Most studies in the field of response surface methodology have only focused on its application for multi-objective optimization and largely have ignored its utilization as a machine learning technique. Central composite design was utilized to develop a model between the variables and the responses. Pressure and temperature of the gasifier, moisture content of polyethylene and equivalence ratio were the variables and the responses were gas yield, cold gas efficiency, carbon dioxide emission and lower heating value of syngas. The findings revealed that root mean square errors of the models developed by response surface methodology were 0.235, 0.438, 0.294 and 1.999 indicating their high validity. Finally, multi-objective optimization of polyethylene waste gasification was carried out using response surface methodology resulting in gas yield of 96.29 g/mol, cold gas efficiency of 76.22%, carbon dioxide emission of 4.66 g/mol and lower heating value of 493.44 kJ/mol. The optimum responses were predicted by response surface methodology with errors smaller than 5%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助zjq采纳,获得10
刚刚
Xuwen发布了新的文献求助10
刚刚
Oscar王完成签到,获得积分10
刚刚
joe发布了新的文献求助10
1秒前
可达燊发布了新的文献求助10
1秒前
LP829发布了新的文献求助10
1秒前
熙熙发布了新的文献求助10
2秒前
CipherSage应助huahua采纳,获得10
2秒前
彭于晏应助能干的明轩采纳,获得10
2秒前
云缘墨色完成签到 ,获得积分10
3秒前
彭于晏应助幽默白竹采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
市不辣完成签到,获得积分10
4秒前
4秒前
hn发布了新的文献求助10
4秒前
5秒前
玉子完成签到 ,获得积分10
5秒前
luyan完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
周美言发布了新的文献求助30
7秒前
行星发布了新的文献求助10
7秒前
tonstark完成签到,获得积分10
9秒前
科研通AI2S应助游艺采纳,获得10
9秒前
Rason发布了新的文献求助10
9秒前
Gaodz完成签到,获得积分10
9秒前
bhhyyy发布了新的文献求助10
10秒前
10秒前
Genius发布了新的文献求助10
10秒前
健忘怜雪发布了新的文献求助10
10秒前
Dr.Mary完成签到,获得积分10
10秒前
2568269431发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577090
求助须知:如何正确求助?哪些是违规求助? 4662349
关于积分的说明 14741219
捐赠科研通 4602974
什么是DOI,文献DOI怎么找? 2526066
邀请新用户注册赠送积分活动 1495974
关于科研通互助平台的介绍 1465478