Developing gasification process of polyethylene waste by utilization of response surface methodology as a machine learning technique and multi-objective optimizer approach

响应面法 合成气 聚乙烯 木材气体发生器 中心组合设计 工艺工程 燃烧热 材料科学 产量(工程) 二氧化碳 环境科学 废物管理 计算机科学 机器学习 化学 复合材料 工程类 有机化学 燃烧
作者
Rezgar Hasanzadeh,Parisa Mojaver,Taher Azdast,Shahram Khalilarya,Ata Chitsaz
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:48 (15): 5873-5886 被引量:4
标识
DOI:10.1016/j.ijhydene.2022.11.067
摘要

This study set out to evaluate the performance of response surface methodology as a machine learning technique on gasification process of polyethylene waste. Different models were developed for predicting gas yield, cold gas efficiency, carbon dioxide emission and lower heating value of syngas in gasification of polyethylene waste using response surface methodology. The accuracy and validity of these models were checked in comparison with the results obtained from the validated model. Most studies in the field of response surface methodology have only focused on its application for multi-objective optimization and largely have ignored its utilization as a machine learning technique. Central composite design was utilized to develop a model between the variables and the responses. Pressure and temperature of the gasifier, moisture content of polyethylene and equivalence ratio were the variables and the responses were gas yield, cold gas efficiency, carbon dioxide emission and lower heating value of syngas. The findings revealed that root mean square errors of the models developed by response surface methodology were 0.235, 0.438, 0.294 and 1.999 indicating their high validity. Finally, multi-objective optimization of polyethylene waste gasification was carried out using response surface methodology resulting in gas yield of 96.29 g/mol, cold gas efficiency of 76.22%, carbon dioxide emission of 4.66 g/mol and lower heating value of 493.44 kJ/mol. The optimum responses were predicted by response surface methodology with errors smaller than 5%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Danboard发布了新的文献求助10
刚刚
上官若男应助魏开铭采纳,获得10
1秒前
我是老大应助咚咚锵采纳,获得10
1秒前
聂珩发布了新的文献求助10
1秒前
xihuanni完成签到,获得积分10
2秒前
杨森omg发布了新的文献求助10
3秒前
wpk9904完成签到,获得积分10
3秒前
3秒前
结实的寄柔完成签到,获得积分10
3秒前
hussarzcz完成签到,获得积分10
4秒前
阿楷发布了新的文献求助10
4秒前
5秒前
joplinJIA完成签到,获得积分20
6秒前
lerrygg发布了新的文献求助210
6秒前
6秒前
完美世界应助粗犷的问夏采纳,获得10
7秒前
7秒前
瑕灬发布了新的文献求助10
8秒前
汉堡包应助吕如音采纳,获得10
9秒前
9秒前
伊雪儿完成签到,获得积分10
10秒前
Hello应助lplp采纳,获得10
11秒前
12秒前
湛刘佳完成签到 ,获得积分10
13秒前
搜集达人应助粗暴的从蓉采纳,获得30
13秒前
颜千琴发布了新的文献求助10
13秒前
科研通AI2S应助King采纳,获得10
14秒前
LmaoAI应助xing采纳,获得10
14秒前
li完成签到,获得积分10
15秒前
Danboard完成签到,获得积分20
15秒前
空城sniper发布了新的文献求助10
16秒前
寒冷的莫茗完成签到,获得积分10
16秒前
16秒前
17秒前
共享精神应助阿楷采纳,获得10
17秒前
17秒前
18秒前
田様应助颜千琴采纳,获得10
18秒前
田様应助淡然安雁采纳,获得10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135928
求助须知:如何正确求助?哪些是违规求助? 2786670
关于积分的说明 7779194
捐赠科研通 2442969
什么是DOI,文献DOI怎么找? 1298748
科研通“疑难数据库(出版商)”最低求助积分说明 625219
版权声明 600870