Developing gasification process of polyethylene waste by utilization of response surface methodology as a machine learning technique and multi-objective optimizer approach

响应面法 合成气 聚乙烯 木材气体发生器 中心组合设计 工艺工程 燃烧热 材料科学 产量(工程) 二氧化碳 环境科学 废物管理 计算机科学 机器学习 化学 复合材料 工程类 有机化学 燃烧
作者
Rezgar Hasanzadeh,Parisa Mojaver,Taher Azdast,Shahram Khalilarya,Ata Chitsaz
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:48 (15): 5873-5886 被引量:4
标识
DOI:10.1016/j.ijhydene.2022.11.067
摘要

This study set out to evaluate the performance of response surface methodology as a machine learning technique on gasification process of polyethylene waste. Different models were developed for predicting gas yield, cold gas efficiency, carbon dioxide emission and lower heating value of syngas in gasification of polyethylene waste using response surface methodology. The accuracy and validity of these models were checked in comparison with the results obtained from the validated model. Most studies in the field of response surface methodology have only focused on its application for multi-objective optimization and largely have ignored its utilization as a machine learning technique. Central composite design was utilized to develop a model between the variables and the responses. Pressure and temperature of the gasifier, moisture content of polyethylene and equivalence ratio were the variables and the responses were gas yield, cold gas efficiency, carbon dioxide emission and lower heating value of syngas. The findings revealed that root mean square errors of the models developed by response surface methodology were 0.235, 0.438, 0.294 and 1.999 indicating their high validity. Finally, multi-objective optimization of polyethylene waste gasification was carried out using response surface methodology resulting in gas yield of 96.29 g/mol, cold gas efficiency of 76.22%, carbon dioxide emission of 4.66 g/mol and lower heating value of 493.44 kJ/mol. The optimum responses were predicted by response surface methodology with errors smaller than 5%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lsl599应助guojingjing采纳,获得10
刚刚
淡然胡萝卜完成签到,获得积分10
刚刚
2秒前
tan_sg发布了新的文献求助10
3秒前
无极微光应助Ting采纳,获得20
3秒前
CodeCraft应助夙念采纳,获得10
4秒前
YANYAN完成签到,获得积分10
4秒前
adamchris发布了新的文献求助10
4秒前
6秒前
传奇3应助zzg采纳,获得10
6秒前
科研通AI6应助lion采纳,获得10
7秒前
aaawen发布了新的文献求助10
8秒前
9秒前
9秒前
爱夸完成签到,获得积分10
9秒前
zero完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
bkagyin应助蛋挞采纳,获得10
11秒前
乌云发布了新的文献求助20
11秒前
11秒前
李里哩发布了新的文献求助10
12秒前
虚拟的盈发布了新的文献求助10
12秒前
13秒前
天天快乐应助司徒访梦采纳,获得20
13秒前
www完成签到,获得积分10
13秒前
Orange应助科研通管家采纳,获得10
14秒前
bkagyin应助123456采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助123456采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
小二郎应助123456采纳,获得10
14秒前
我是老大应助科研通管家采纳,获得10
14秒前
科目三应助123456采纳,获得10
14秒前
Qingyong21应助科研通管家采纳,获得10
14秒前
宋呵呵应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049