Developing gasification process of polyethylene waste by utilization of response surface methodology as a machine learning technique and multi-objective optimizer approach

响应面法 合成气 聚乙烯 木材气体发生器 中心组合设计 工艺工程 燃烧热 材料科学 产量(工程) 二氧化碳 环境科学 废物管理 计算机科学 机器学习 化学 复合材料 工程类 有机化学 燃烧
作者
Rezgar Hasanzadeh,Parisa Mojaver,Taher Azdast,Shahram Khalilarya,Ata Chitsaz
出处
期刊:International Journal of Hydrogen Energy [Elsevier BV]
卷期号:48 (15): 5873-5886 被引量:4
标识
DOI:10.1016/j.ijhydene.2022.11.067
摘要

This study set out to evaluate the performance of response surface methodology as a machine learning technique on gasification process of polyethylene waste. Different models were developed for predicting gas yield, cold gas efficiency, carbon dioxide emission and lower heating value of syngas in gasification of polyethylene waste using response surface methodology. The accuracy and validity of these models were checked in comparison with the results obtained from the validated model. Most studies in the field of response surface methodology have only focused on its application for multi-objective optimization and largely have ignored its utilization as a machine learning technique. Central composite design was utilized to develop a model between the variables and the responses. Pressure and temperature of the gasifier, moisture content of polyethylene and equivalence ratio were the variables and the responses were gas yield, cold gas efficiency, carbon dioxide emission and lower heating value of syngas. The findings revealed that root mean square errors of the models developed by response surface methodology were 0.235, 0.438, 0.294 and 1.999 indicating their high validity. Finally, multi-objective optimization of polyethylene waste gasification was carried out using response surface methodology resulting in gas yield of 96.29 g/mol, cold gas efficiency of 76.22%, carbon dioxide emission of 4.66 g/mol and lower heating value of 493.44 kJ/mol. The optimum responses were predicted by response surface methodology with errors smaller than 5%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方圆几里完成签到,获得积分10
刚刚
blue完成签到,获得积分10
1秒前
老八完成签到,获得积分10
1秒前
Simmy完成签到,获得积分10
1秒前
拼搏半梦完成签到,获得积分10
1秒前
chen完成签到 ,获得积分10
2秒前
田様应助peace采纳,获得10
3秒前
3秒前
萌酱完成签到,获得积分20
3秒前
4秒前
4秒前
沉默的莞完成签到,获得积分10
4秒前
王Hope完成签到,获得积分10
4秒前
默默无闻完成签到,获得积分10
5秒前
6秒前
执着的导师完成签到,获得积分10
6秒前
ding应助DrW采纳,获得10
7秒前
自由井完成签到,获得积分10
7秒前
英俊的铭应助我不是南希采纳,获得10
9秒前
jiao发布了新的文献求助20
9秒前
飘着的鬼完成签到,获得积分10
9秒前
小二郎应助seannnnnnn采纳,获得10
9秒前
xcx完成签到,获得积分10
9秒前
划水完成签到,获得积分10
10秒前
czh完成签到,获得积分10
10秒前
11秒前
111发布了新的文献求助10
12秒前
knjfranklin发布了新的文献求助10
12秒前
无语的怜梦完成签到,获得积分10
12秒前
12秒前
陈艺鹏完成签到,获得积分10
12秒前
12秒前
zt完成签到,获得积分10
12秒前
祝笑柳完成签到,获得积分10
12秒前
牛马小白完成签到,获得积分10
13秒前
左秋白完成签到,获得积分10
13秒前
爱听歌的寄云完成签到,获得积分10
14秒前
虞小渔完成签到,获得积分10
14秒前
334niubi666完成签到 ,获得积分10
14秒前
Auroar完成签到 ,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953576
求助须知:如何正确求助?哪些是违规求助? 3499159
关于积分的说明 11094348
捐赠科研通 3229748
什么是DOI,文献DOI怎么找? 1785744
邀请新用户注册赠送积分活动 869490
科研通“疑难数据库(出版商)”最低求助积分说明 801478