神经形态工程学
计算机科学
光子学
尖峰神经网络
块(置换群论)
光学计算
计算
炸薯条
构造(python库)
人工神经网络
非线性系统
计算机硬件
饱和吸收
电子工程
计算机体系结构
算法
人工智能
光电子学
光纤激光器
材料科学
物理
电信
工程类
量子力学
数学
光纤
程序设计语言
几何学
作者
Shuiying Xiang,Yuechun Shi,Xingxing Guo,Yahui Zhang,Hongji Wang,Dianzhuang Zheng,Ziwei Song,Yanan Han,Shuang Gao,Shihao Zhao,Biling Gu,Hailing Wang,Xiaojun Zhu,Lianping Hou,Xiangfei Chen,Wanhua Zheng,Xiaohua Ma,Yue Hao
出处
期刊:Optica
[The Optical Society]
日期:2022-12-12
卷期号:10 (2): 162-162
被引量:40
标识
DOI:10.1364/optica.468347
摘要
Photonic neuromorphic computing has emerged as a promising approach to building a low-latency and energy-efficient non-von Neuman computing system. A photonic spiking neural network (PSNN) exploits brain-like spatiotemporal processing to realize high-performance neuromorphic computing. However, the nonlinear computation of a PSNN remains a significant challenge. Here, we propose and fabricate a photonic spiking neuron chip based on an integrated Fabry–Perot laser with a saturable absorber (FP-SA). The nonlinear neuron-like dynamics including temporal integration, threshold and spike generation, a refractory period, inhibitory behavior and cascadability are experimentally demonstrated, which offers an indispensable fundamental building block to construct the PSNN hardware. Furthermore, we propose time-multiplexed temporal spike encoding to realize a functional PSNN far beyond the hardware integration scale limit. PSNNs with single/cascaded photonic spiking neurons are experimentally demonstrated to realize hardware-algorithm collaborative computing, showing the capability to perform classification tasks with a supervised learning algorithm, which paves the way for a multilayer PSNN that can handle complex tasks.
科研通智能强力驱动
Strongly Powered by AbleSci AI