Entropy based Detection approach for Micro-UAV and Classification using Machine Learning

计算机科学 短时傅里叶变换 光谱图 人工智能 模式识别(心理学) 熵(时间箭头) 稳健性(进化) 傅里叶变换 数学 数学分析 傅里叶分析 生物化学 化学 物理 量子力学 基因
作者
Srihasam Mahesh Kaushik,Vuddagiri Chaitanya,Parasuramuni Kiran Kumar,Mohd Musaddiq Ahmed,Swetha Namburu
标识
DOI:10.1109/icicict54557.2022.9917577
摘要

In this paper, we explore the techniques for detection and classification of Unmanned Aerial Vehicles (UAVs) using statistical features of the remote controller Radio Frequency (RF) signals in the presence of environmental noise. In the detection mechanism, the RF signal is transformed into Wavelet domain to filter out noise as well as to reduce computational cost. A kernel entropy based approach is used to partition the RF signal into bins and detect the presence of UAV. Unlike Conventional approaches, we compute the energy transient of signal from the Short Time Fourier Transform (STFT) coefficients obtained from Spectrogram of RF signal. Further, the higher order statistical features of energy transient signal are derived and ranked using Neighborhood Component Analysis (NCA)to select notable features for reducing the computational overhead. Finally, the significant features are used to train machine learning algorithm for classification. The algorithms are trained and tested using MPACT DroneRC Dataset containing 50 RF signals from each of the 15 different micro-UAV controllers. The dataset is partitioned with train to test ratio of 4:1 i.e., 80% of dataset is used for training and 20% for testing the algorithm. The k- Nearest Neighbor (kNN) algorithm with NCA classifies all micro-UAVs with an accuracy of 96.66%. The detection technique is also simulated for different Signal to Noise Ratio (SNR) levels and outcomes are reported.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助周梦蝶采纳,获得10
2秒前
wisteety发布了新的文献求助10
3秒前
3秒前
桐桐应助jiabaoyu采纳,获得10
3秒前
3秒前
3秒前
yaya发布了新的文献求助10
4秒前
华仔应助黑章鱼保罗采纳,获得10
5秒前
5秒前
天道酬勤完成签到,获得积分10
5秒前
彭于晏应助wxxxxxxxxxx采纳,获得10
7秒前
7秒前
7秒前
顾矜应助syalonyui采纳,获得10
8秒前
Charlotte完成签到 ,获得积分10
8秒前
8秒前
9秒前
芈钥完成签到 ,获得积分10
9秒前
CZJ完成签到,获得积分10
9秒前
zkg发布了新的文献求助10
10秒前
你好啊发布了新的文献求助10
12秒前
12秒前
沐阳完成签到,获得积分10
13秒前
13秒前
abi完成签到 ,获得积分10
13秒前
13秒前
东西南北完成签到,获得积分10
14秒前
彭于晏应助Mialy采纳,获得10
14秒前
jiabaoyu发布了新的文献求助10
14秒前
15秒前
子车茗应助心静LL采纳,获得20
15秒前
16秒前
JOUJOU发布了新的文献求助10
16秒前
16秒前
谁都别想PUA我完成签到,获得积分10
17秒前
伶俐绿海发布了新的文献求助10
17秒前
刘晶应助yaya采纳,获得10
17秒前
善学以致用应助yaya采纳,获得10
17秒前
阔落发布了新的文献求助10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310609
求助须知:如何正确求助?哪些是违规求助? 2943401
关于积分的说明 8514871
捐赠科研通 2618733
什么是DOI,文献DOI怎么找? 1431388
科研通“疑难数据库(出版商)”最低求助积分说明 664462
邀请新用户注册赠送积分活动 649626