Entropy based Detection approach for Micro-UAV and Classification using Machine Learning

计算机科学 短时傅里叶变换 光谱图 人工智能 模式识别(心理学) 熵(时间箭头) 稳健性(进化) 傅里叶变换 数学 生物化学 量子力学 基因 物理 数学分析 化学 傅里叶分析
作者
Srihasam Mahesh Kaushik,Vuddagiri Chaitanya,Parasuramuni Kiran Kumar,Mohd Musaddiq Ahmed,Swetha Namburu
标识
DOI:10.1109/icicict54557.2022.9917577
摘要

In this paper, we explore the techniques for detection and classification of Unmanned Aerial Vehicles (UAVs) using statistical features of the remote controller Radio Frequency (RF) signals in the presence of environmental noise. In the detection mechanism, the RF signal is transformed into Wavelet domain to filter out noise as well as to reduce computational cost. A kernel entropy based approach is used to partition the RF signal into bins and detect the presence of UAV. Unlike Conventional approaches, we compute the energy transient of signal from the Short Time Fourier Transform (STFT) coefficients obtained from Spectrogram of RF signal. Further, the higher order statistical features of energy transient signal are derived and ranked using Neighborhood Component Analysis (NCA)to select notable features for reducing the computational overhead. Finally, the significant features are used to train machine learning algorithm for classification. The algorithms are trained and tested using MPACT DroneRC Dataset containing 50 RF signals from each of the 15 different micro-UAV controllers. The dataset is partitioned with train to test ratio of 4:1 i.e., 80% of dataset is used for training and 20% for testing the algorithm. The k- Nearest Neighbor (kNN) algorithm with NCA classifies all micro-UAVs with an accuracy of 96.66%. The detection technique is also simulated for different Signal to Noise Ratio (SNR) levels and outcomes are reported.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜蜜黄豆发布了新的文献求助10
刚刚
刚刚
czcmh应助科研通管家采纳,获得30
刚刚
一叶知秋应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
Mic应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
czcmh应助科研通管家采纳,获得30
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
sevenhill应助科研通管家采纳,获得10
1秒前
一叶知秋应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
sevenhill应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
2秒前
Mic应助科研通管家采纳,获得10
2秒前
sevenhill应助科研通管家采纳,获得10
2秒前
2秒前
BowieHuang应助keyanxiaobaishu采纳,获得10
6秒前
9秒前
机智的lan完成签到 ,获得积分10
12秒前
12秒前
Juid应助Lancet采纳,获得20
16秒前
加百莉发布了新的文献求助10
17秒前
Owen应助段醒醒采纳,获得10
20秒前
蛋黄完成签到,获得积分10
23秒前
7788完成签到,获得积分10
24秒前
25秒前
27秒前
Ying发布了新的文献求助20
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557634
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668874
捐赠科研通 4584158
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488842
关于科研通互助平台的介绍 1459533