Entropy based Detection approach for Micro-UAV and Classification using Machine Learning

计算机科学 短时傅里叶变换 光谱图 人工智能 模式识别(心理学) 熵(时间箭头) 稳健性(进化) 傅里叶变换 数学 数学分析 傅里叶分析 生物化学 化学 物理 量子力学 基因
作者
Srihasam Mahesh Kaushik,Vuddagiri Chaitanya,Parasuramuni Kiran Kumar,Mohd Musaddiq Ahmed,Swetha Namburu
标识
DOI:10.1109/icicict54557.2022.9917577
摘要

In this paper, we explore the techniques for detection and classification of Unmanned Aerial Vehicles (UAVs) using statistical features of the remote controller Radio Frequency (RF) signals in the presence of environmental noise. In the detection mechanism, the RF signal is transformed into Wavelet domain to filter out noise as well as to reduce computational cost. A kernel entropy based approach is used to partition the RF signal into bins and detect the presence of UAV. Unlike Conventional approaches, we compute the energy transient of signal from the Short Time Fourier Transform (STFT) coefficients obtained from Spectrogram of RF signal. Further, the higher order statistical features of energy transient signal are derived and ranked using Neighborhood Component Analysis (NCA)to select notable features for reducing the computational overhead. Finally, the significant features are used to train machine learning algorithm for classification. The algorithms are trained and tested using MPACT DroneRC Dataset containing 50 RF signals from each of the 15 different micro-UAV controllers. The dataset is partitioned with train to test ratio of 4:1 i.e., 80% of dataset is used for training and 20% for testing the algorithm. The k- Nearest Neighbor (kNN) algorithm with NCA classifies all micro-UAVs with an accuracy of 96.66%. The detection technique is also simulated for different Signal to Noise Ratio (SNR) levels and outcomes are reported.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞先生发布了新的文献求助10
刚刚
yi5feng完成签到,获得积分10
1秒前
高高高完成签到 ,获得积分20
1秒前
2秒前
尉迟剑心发布了新的文献求助10
2秒前
orixero应助不安的朋友采纳,获得30
3秒前
3秒前
4秒前
Yep0672发布了新的文献求助30
4秒前
5秒前
5秒前
6秒前
6秒前
7秒前
8秒前
202430621130发布了新的文献求助10
9秒前
9秒前
风趣的从梦完成签到,获得积分10
10秒前
10秒前
多多发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
12秒前
13秒前
13秒前
Re发布了新的文献求助10
13秒前
橙子完成签到,获得积分10
15秒前
15秒前
李爱国应助尉迟剑心采纳,获得10
15秒前
15秒前
科研通AI5应助十一采纳,获得10
16秒前
17秒前
研友_08og68发布了新的文献求助10
17秒前
YY发布了新的文献求助10
17秒前
17秒前
18秒前
Azyyyy完成签到,获得积分10
18秒前
18秒前
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3743446
求助须知:如何正确求助?哪些是违规求助? 3286024
关于积分的说明 10048994
捐赠科研通 3002666
什么是DOI,文献DOI怎么找? 1648306
邀请新用户注册赠送积分活动 784617
科研通“疑难数据库(出版商)”最低求助积分说明 750780