血管紧张素II
细胞生物学
心力衰竭
氧化应激
肌肉肥大
内分泌学
药理学
化学
内科学
医学
生物
受体
作者
Yao Lu,Jian Zhang,Bing Han,Yue Yu,Wei Zhao,Tianyu Wu,Yangming Mao,Fengxiang Zhang
标识
DOI:10.1016/j.phrs.2022.106607
摘要
As a pathological myocardial remodeling process in a variety of cardiovascular diseases, cardiac hypertrophy still has no effective treatment. Human mesenchymal stem cells (hMSCs) derived extracellular vesicles (EVs) has been recognized as a promising treatment strategy for cardiac disease.In this study, the inhibitory effects on cardiac hypertrophy are compared between normoxia-conditioned hMSC-derived EVs (Nor-EVs) and hypoxia-conditioned hMSC-derived EVs (Hypo-EVs) in neonatal rat cardiomyocytes (NRCMs) after angiotensin II (Ang II) stimulation and in a mouse model of transverse aortic constriction (TAC).We demonstrate that Hypo-EVs exert an increased inhibitory effect on cardiac hypertrophy compared with Nor-EVs. Parkinson disease protein 7 (PARK7/DJ-1) is identify as a differential protein between Nor-EVs and Hypo-EVs by quantitative proteomics analysis. Results show that DJ-1, which is rich in Hypo-EVs, alleviates mitochondrial dysfunction and excessive mitochondrial reactive oxygen species (mtROS) production as an antioxidant. Mechanistic studies demonstrate for the first time that DJ-1 may suppress cardiac hypertrophy by inhibiting the activity of proteasome subunit beta type 10 (PSMB10) through a direct physical interaction. This interaction can inhibit angiotensin II type 1 receptor (AT1R)-mediated signaling pathways resulting in cardiac hypertrophy through alleviating ubiquitination degradation of AT1R-associated protein (ATRAP).When taken together, our study suggests that Hypo-EVs have significant potential as a novel therapeutic agent for the treatment of cardiac hypertrophy.
科研通智能强力驱动
Strongly Powered by AbleSci AI