DPNet: Detail-preserving image deraining via learning frequency domain knowledge

过度拟合 计算机科学 人工智能 频域 块(置换群论) 特征(语言学) 保险丝(电气) 一般化 图像(数学) 模式识别(心理学) 学习迁移 计算机视觉 机器学习 人工神经网络 数学 语言学 电气工程 工程类 数学分析 哲学 几何学
作者
Hao Yang,Dongming Zhou,Jinde Cao,Qinglin Zhao
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:130: 103740-103740 被引量:3
标识
DOI:10.1016/j.dsp.2022.103740
摘要

The quality of images captured in rainy days is severely degraded, which affects the accuracy of subsequent computer vision tasks. Recently, many deep learning-based methods have demonstrated superior performance for single image deraining. However, there are still many issues left. Since real-world rain images and their corresponding ground truths are difficult to collect, models trained on limited data may lead to overfitting. Meanwhile, although many methods can remove part of the rain streaks, most of them cannot reconstruct precise edges and textures. For the first issue, we use the transfer learning approach. Loading pre-trained parameters trained on the ImageNet enables the network to have robust feature representation, which improves the generalization of the network. For the second issue, we restore clear details by making full use of the frequency domain information of the image. Specifically, we design a novel frequency domain residual block (FRDB) and use an efficient fusion strategy in FRDB to fuse spatial and frequency domain features. Then, we propose a frequency domain reconstruction loss function (FDR loss) to restore details by reducing the differences in high-frequency space. Finally, a simple detail enhancement attention module (DEAM) is used to further enhance the image details. Extensive experimental results demonstrate that our DPNet has superior performance on both synthetic and real data. Furthermore, we verify the effectiveness of our method on downstream computer vision tasks. The source codes will be open at https://github.com/noxsine/DPNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯九发布了新的文献求助10
刚刚
BioRick发布了新的文献求助10
刚刚
Jasper应助fdpb采纳,获得10
刚刚
失眠哈密瓜完成签到,获得积分10
刚刚
1秒前
mbl2006完成签到 ,获得积分10
1秒前
行者橙子完成签到,获得积分20
1秒前
1秒前
jassica9完成签到,获得积分10
2秒前
2秒前
万能图书馆应助小魔笛采纳,获得30
3秒前
打打应助NIni妮采纳,获得10
3秒前
徐徐徐应助Serein采纳,获得10
3秒前
唯一呜呜呜呜完成签到,获得积分10
4秒前
4秒前
Jasper应助betterme采纳,获得10
4秒前
追寻紫安发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
慕青应助纪秋采纳,获得10
5秒前
6秒前
6秒前
彭于彦祖应助Musen采纳,获得30
6秒前
BioRick完成签到,获得积分10
6秒前
7秒前
现代盼秋发布了新的文献求助10
7秒前
隐形的翅膀完成签到,获得积分10
7秒前
jassica9发布了新的文献求助10
7秒前
今后应助坚定的白薇采纳,获得10
8秒前
林志文发布了新的文献求助10
8秒前
8秒前
whatever举报熊熊求助涉嫌违规
11秒前
研友_VZG7GZ应助Cinatolii采纳,获得10
11秒前
领导范儿应助回到未来采纳,获得10
12秒前
12秒前
12秒前
12秒前
Hello应助dreamer采纳,获得10
13秒前
方文杰完成签到,获得积分10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144482
求助须知:如何正确求助?哪些是违规求助? 2796014
关于积分的说明 7817418
捐赠科研通 2452067
什么是DOI,文献DOI怎么找? 1304867
科研通“疑难数据库(出版商)”最低求助积分说明 627330
版权声明 601432