Target-free 3D tiny structural vibration measurement based on deep learning and motion magnification

振动 加速度计 流离失所(心理学) 悬臂梁 结构健康监测 加速度 工程类 计算机科学 人工智能 声学 计算机视觉 结构工程 物理 心理学 经典力学 心理治疗师 操作系统
作者
Yanda Shao,Ling Li,Jun Li,Senjian An,Hong Hao
出处
期刊:Journal of Sound and Vibration [Elsevier BV]
卷期号:538: 117244-117244 被引量:46
标识
DOI:10.1016/j.jsv.2022.117244
摘要

In the field of structural health monitoring (SHM), computer vision based methods have been usually developed for 2-dimensional (2D) vibration displacement measurement and crack identification of civil engineering structures. However, the accurate measurement of tiny 3-dimensional (3D) vibrations for real civil engineering structures remains a very difficult task. To overcome this challenge, this paper proposes a target-free full-field 3D tiny vibration measurement approach for civil engineering structures by using a binocular vision system. The proposed approach is based on deep learning and motion magnification. A phase-based video motion magnification algorithm is employed to achieve a high measurement accuracy of tiny vibrations at the submillimeter level. The advanced key point detection, matching and tracking algorithms via deep learning techniques are employed to achieve target-free tiny vibration displacement measurement. The accuracy and performance of the proposed approach are evaluated through experimental tests on a steel cantilever beam in the laboratory. In-field experimental tests are conducted on a pedestrian bridge on a university campus to investigate the accuracy of the proposed approach in practical applications. The measured 3D tiny vibration displacement from the proposed approach is compared with those measured by laser displacement sensors, and the derived acceleration responses are compared with those measured from the installed accelerometers on the testing structures. The results demonstrate that the 3D tiny vibration measurements are obtained accurately by the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mifabric发布了新的文献求助10
刚刚
不赖床的科研狗完成签到,获得积分10
刚刚
张文完成签到,获得积分10
1秒前
Sherry完成签到,获得积分10
1秒前
无花果应助rrrrroxie采纳,获得10
2秒前
2秒前
任白993发布了新的文献求助10
2秒前
张晶晶发布了新的文献求助10
2秒前
噔噔噔完成签到 ,获得积分10
3秒前
Profeto应助乐枳采纳,获得10
3秒前
一条摆摆的沙丁鱼完成签到 ,获得积分10
3秒前
3秒前
云雾完成签到 ,获得积分10
4秒前
4秒前
valleylily完成签到,获得积分10
4秒前
跳跃飞薇完成签到 ,获得积分10
5秒前
5秒前
layman完成签到,获得积分10
5秒前
动听惜海发布了新的文献求助10
6秒前
高兴孤云完成签到 ,获得积分10
6秒前
邓希静完成签到,获得积分10
7秒前
丫头完成签到,获得积分10
8秒前
花Cheung完成签到,获得积分10
8秒前
土拨鼠发布了新的文献求助10
8秒前
9秒前
DOUBLE完成签到,获得积分10
9秒前
研究生完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助30
10秒前
风181013完成签到,获得积分10
10秒前
呆萌的如天完成签到,获得积分10
10秒前
Mifabric完成签到,获得积分10
11秒前
比比谁的速度快给畅快莫茗的求助进行了留言
11秒前
黄鼠狼发布了新的文献求助10
11秒前
12秒前
12秒前
wzj完成签到,获得积分10
13秒前
千千千千千千青完成签到,获得积分10
14秒前
14秒前
顺心的羊完成签到,获得积分10
14秒前
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009325
求助须知:如何正确求助?哪些是违规求助? 3549162
关于积分的说明 11301105
捐赠科研通 3283572
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886205
科研通“疑难数据库(出版商)”最低求助积分说明 811301