Target-free 3D tiny structural vibration measurement based on deep learning and motion magnification

振动 加速度计 流离失所(心理学) 悬臂梁 结构健康监测 加速度 工程类 计算机科学 人工智能 声学 计算机视觉 结构工程 物理 心理学 经典力学 心理治疗师 操作系统
作者
Yanda Shao,Li Ling,Jun Li,Senjian An,Hong Hao
出处
期刊:Journal of Sound and Vibration [Elsevier]
卷期号:538: 117244-117244 被引量:31
标识
DOI:10.1016/j.jsv.2022.117244
摘要

In the field of structural health monitoring (SHM), computer vision based methods have been usually developed for 2-dimensional (2D) vibration displacement measurement and crack identification of civil engineering structures. However, the accurate measurement of tiny 3-dimensional (3D) vibrations for real civil engineering structures remains a very difficult task. To overcome this challenge, this paper proposes a target-free full-field 3D tiny vibration measurement approach for civil engineering structures by using a binocular vision system. The proposed approach is based on deep learning and motion magnification. A phase-based video motion magnification algorithm is employed to achieve a high measurement accuracy of tiny vibrations at the submillimeter level. The advanced key point detection, matching and tracking algorithms via deep learning techniques are employed to achieve target-free tiny vibration displacement measurement. The accuracy and performance of the proposed approach are evaluated through experimental tests on a steel cantilever beam in the laboratory. In-field experimental tests are conducted on a pedestrian bridge on a university campus to investigate the accuracy of the proposed approach in practical applications. The measured 3D tiny vibration displacement from the proposed approach is compared with those measured by laser displacement sensors, and the derived acceleration responses are compared with those measured from the installed accelerometers on the testing structures. The results demonstrate that the 3D tiny vibration measurements are obtained accurately by the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
易玉燕完成签到,获得积分10
1秒前
丝丢皮的发布了新的文献求助10
2秒前
hhhh发布了新的文献求助10
2秒前
2秒前
3秒前
wjw发布了新的文献求助10
3秒前
geigeigei完成签到,获得积分10
3秒前
3秒前
yuyan发布了新的文献求助30
3秒前
daq发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
跳跃的凡霜完成签到,获得积分10
5秒前
Yurrrrt发布了新的文献求助10
7秒前
gdh发布了新的文献求助10
7秒前
自信鞯发布了新的文献求助10
8秒前
yefeng发布了新的文献求助10
8秒前
8秒前
淡然白安完成签到,获得积分10
8秒前
Weining发布了新的文献求助10
9秒前
英俊的铭应助li采纳,获得10
9秒前
搜集达人应助123采纳,获得10
9秒前
飞翔的霸天哥应助十四采纳,获得30
9秒前
NZH驳回了小二郎应助
9秒前
范宝宝关注了科研通微信公众号
10秒前
10秒前
甜甜玫瑰应助燕知南采纳,获得10
10秒前
10秒前
激昂的青雪完成签到,获得积分10
10秒前
12秒前
kings发布了新的文献求助10
13秒前
yye发布了新的文献求助10
13秒前
费费Queen完成签到,获得积分10
14秒前
Linda完成签到,获得积分10
16秒前
17秒前
受伤南霜发布了新的文献求助10
17秒前
明理凝阳完成签到 ,获得积分10
18秒前
刺槐完成签到,获得积分10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156221
求助须知:如何正确求助?哪些是违规求助? 2807720
关于积分的说明 7874164
捐赠科研通 2465918
什么是DOI,文献DOI怎么找? 1312504
科研通“疑难数据库(出版商)”最低求助积分说明 630154
版权声明 601912