Machine Learning-Based Model for Prediction of Early Post-Stroke Fatigue in Patients With Stroke: A Longitudinal Study

冲程(发动机) 医学 布里氏评分 物理疗法 接收机工作特性 物理医学与康复 萧条(经济学) 生活质量(医疗保健) 机器学习 内科学 机械工程 工程类 护理部 计算机科学 经济 宏观经济学
作者
Yu Wu,Dong Zhou,Lovel Fornah,Jian Liu,Jun Zhao,Shicai Wu
出处
期刊:Neurorehabilitation and Neural Repair [SAGE Publishing]
标识
DOI:10.1177/15459683251329893
摘要

BackgroundPost-stroke fatigue, as one of the long-lasting physical and mental symptoms accompanying stroke survivors, will seriously affect the daily living ability and quality of life of stroke patients.ObjectiveThe aim of this study was to develop machine learning (ML) algorithms to predict early post-stroke fatigue among patients with stroke.MethodsA longitudinal study of 702 patients with stroke followed for 3 months. Twenty-three clinical features were obtained from medical records and questionnaires before discharge. Early post-stroke fatigue was assessed using the Fatigue Severity Scale. The dataset was randomly divided into a training group (70%) and an internal validation group (30%), applied oversampling, 10-fold cross-validation, and grid search to optimize the hyperparameter. Feature selection using the Least Absolute Shrinkage and Selection Operator (LASSO) regression. Sixteen ML algorithms were performed to predict early post-stroke fatigue in this study. Accuracy, precision, recall, F1 score, area under the receiver operating characteristic curve (AUC), and brier score were used to evaluate the models performance.ResultsAmong the 16 ML algorithms, the Bagging model was the optimal model for predicting early post-stroke fatigue in patients with stroke (AUC = 0.8479, accuracy = 0.7518, precision = 0.5741, recall = 0.7209, F1 score = 0.6392, brier score = 0.1490). The feature selection based on LASSO revealed that risk factors for early post-stroke fatigue in patients with stroke included anxiety, sleep, social support, family care, pain, depression, neural-functional defect, quit/no drinking, balance function, type of stroke, sex, heart disease, smoking, and hemiplegia.ConclusionsIn this study, the Bagging model proved to be effective in predicting early post-stroke fatigue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂亮凌旋完成签到,获得积分10
刚刚
饱满的尔云完成签到,获得积分10
刚刚
大个应助高山采纳,获得10
1秒前
小刘完成签到,获得积分10
1秒前
1秒前
3秒前
哈牛发布了新的文献求助30
3秒前
3秒前
3秒前
mou发布了新的文献求助10
4秒前
脑洞疼应助zzzzqqqq采纳,获得10
4秒前
4秒前
852应助卢本伟牛逼采纳,获得10
4秒前
5秒前
毛豆应助欢呼的爆米花采纳,获得10
5秒前
5秒前
NexusExplorer应助水柚子采纳,获得10
5秒前
7秒前
小静发布了新的文献求助10
7秒前
刚得力完成签到,获得积分10
7秒前
8秒前
sxx发布了新的文献求助10
8秒前
8秒前
王木木完成签到 ,获得积分10
8秒前
9秒前
方硕发布了新的文献求助30
9秒前
Hysen_L完成签到,获得积分10
10秒前
JamesPei应助笑笑采纳,获得10
10秒前
xx发布了新的文献求助10
10秒前
liukang172发布了新的文献求助10
11秒前
orixero应助斯人采纳,获得10
11秒前
南霖完成签到,获得积分10
12秒前
六便士完成签到,获得积分10
12秒前
12秒前
黄少侠完成签到 ,获得积分10
12秒前
yuming完成签到,获得积分10
13秒前
找论文机器完成签到,获得积分10
13秒前
1111完成签到,获得积分10
13秒前
13秒前
小马甲应助nihaoxiaoai采纳,获得10
14秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730023
求助须知:如何正确求助?哪些是违规求助? 3274861
关于积分的说明 9989324
捐赠科研通 2990315
什么是DOI,文献DOI怎么找? 1641017
邀请新用户注册赠送积分活动 779534
科研通“疑难数据库(出版商)”最低求助积分说明 748237