Mechanical behavior analyses of 4D printed metamaterials structures with excellent energy absorption ability

超材料 材料科学 复合材料 吸收(声学) 3D打印 航空航天 减震器 微观结构 材料设计 机械能 机械工程 工程物理 光电子学 工程类 航空航天工程 功率(物理) 物理 量子力学
作者
Wei Zhao,Chengbin Yue,Liwu Liu,Jinsong Leng,Yanju Liu
出处
期刊:Composite Structures [Elsevier]
卷期号:304: 116360-116360 被引量:20
标识
DOI:10.1016/j.compstruct.2022.116360
摘要

Mechanical metamaterials with immense specific energy absorption and high specific strength are extensively being applied in engineering fields, including bone tissue scaffolds, aerospace and automotive engineering. Many structural design strategies have been developed to improve their mechanical properties. The lattice metamaterials with a tremendous specific energy absorption capacity exhibit continual platform stress after initial yield and before densification. Here, combined with bionic design, we designed and fabricated a series of mechanical metamaterial with tension-dominated mechanical behavior which can assimilate enormous amounts of energy while maintaining a low density. The design strategy relied on the network construction in the periodic grid topology, which took the microstructure with several beams as the building block connecting the grid nodes. The mechanical properties can be adjusted by changing topology parameters. Additionally, the metamaterials fabricated by 4D printing technology show intelligent properties, which can jump from one mode to another under external stimulation. It was worth mentioning that the shape memory effect (SME) also endowed the material with certain self-healing properties. Excellent compressive resistance, energy absorption, shock absorption and shape memory effect suggest the application prospect in engineering fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善良的冷梅完成签到,获得积分10
1秒前
Orange应助芋头粽子采纳,获得10
1秒前
Xulun完成签到,获得积分10
3秒前
4秒前
holmes完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
云隐发布了新的文献求助10
9秒前
Hello应助霸气的梦露采纳,获得10
9秒前
加菲丰丰应助holmes采纳,获得20
12秒前
芒果好高完成签到,获得积分10
12秒前
12秒前
13秒前
爆米花应助Ars采纳,获得10
13秒前
14秒前
16秒前
橙子完成签到,获得积分20
17秒前
jxy09156发布了新的文献求助10
18秒前
儒雅大象发布了新的文献求助10
18秒前
啦熊发布了新的文献求助10
18秒前
21秒前
侃侃关注了科研通微信公众号
21秒前
YUYUYU应助家湘采纳,获得30
22秒前
芋头粽子发布了新的文献求助10
23秒前
wei完成签到,获得积分10
23秒前
24秒前
24秒前
25秒前
小喵发布了新的文献求助10
26秒前
27秒前
Wind发布了新的文献求助10
27秒前
墨墨完成签到,获得积分10
28秒前
啦熊完成签到,获得积分10
30秒前
30秒前
30秒前
Ava应助云隐采纳,获得10
31秒前
Ars发布了新的文献求助10
32秒前
酷酷的老太完成签到,获得积分10
32秒前
33秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143695
求助须知:如何正确求助?哪些是违规求助? 2795199
关于积分的说明 7813564
捐赠科研通 2451202
什么是DOI,文献DOI怎么找? 1304353
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601393