Reliable extrapolation of deep neural operators informed by physics or sparse observations

外推法 深度学习 推论 插值(计算机图形学) 人工神经网络 操作员(生物学) 理查森推断 机器学习 功能(生物学) 数学 计算机科学 人工智能 算法 统计 运动(物理) 生物化学 化学 抑制因子 进化生物学 生物 转录因子 基因
作者
Min Zhu,Handi Zhang,Anran Jiao,George Em Karniadakis,Lu Lu
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:412: 116064-116064 被引量:53
标识
DOI:10.1016/j.cma.2023.116064
摘要

Deep neural operators can learn nonlinear mappings between infinite-dimensional function spaces via deep neural networks. As promising surrogate solvers of partial differential equations (PDEs) for real-time prediction, deep neural operators such as deep operator networks (DeepONets) provide a new simulation paradigm in science and engineering. Pure data-driven neural operators and deep learning models, in general, are usually limited to interpolation scenarios, where new predictions utilize inputs within the support of the training set. However, in the inference stage of real-world applications, the input may lie outside the support, i.e., extrapolation is required, which may result to large errors and unavoidable failure of deep learning models. Here, we address this challenge of extrapolation for deep neural operators. First, we systematically investigate the extrapolation behavior of DeepONets by quantifying the extrapolation complexity via the 2-Wasserstein distance between two function spaces and propose a new behavior of bias-variance trade-off for extrapolation with respect to model capacity. Subsequently, we develop a complete workflow, including extrapolation determination, and we propose five reliable learning methods that guarantee a safe prediction under extrapolation by requiring additional information -- the governing PDEs of the system or sparse new observations. The proposed methods are based on either fine-tuning a pre-trained DeepONet or multifidelity learning. We demonstrate the effectiveness of the proposed framework for various types of parametric PDEs. Our systematic comparisons provide practical guidelines for selecting a proper extrapolation method depending on the available information, desired accuracy, and required inference speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xx发布了新的文献求助10
2秒前
2秒前
梅TiAmo发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
万能图书馆应助斯文无敌采纳,获得10
5秒前
5秒前
5秒前
林希希发布了新的文献求助10
6秒前
情怀应助max采纳,获得10
6秒前
陶醉的念之完成签到,获得积分10
6秒前
炸药发布了新的文献求助10
6秒前
6秒前
gjh发布了新的文献求助10
7秒前
Ava应助陈泓思采纳,获得10
7秒前
香蕉觅云应助优美的唇彩采纳,获得10
7秒前
可乐加冰完成签到,获得积分10
8秒前
小幻螺发布了新的文献求助10
8秒前
草莓熊发布了新的文献求助10
8秒前
8秒前
完美世界应助Rebirth采纳,获得10
8秒前
9秒前
9秒前
9秒前
深情安青应助ssss采纳,获得10
9秒前
超级的鹅发布了新的文献求助10
9秒前
淡定沧海完成签到,获得积分10
9秒前
9秒前
传奇3应助心灵美的花卷采纳,获得10
10秒前
10秒前
10秒前
10秒前
李梓权完成签到,获得积分20
11秒前
yoru16完成签到,获得积分10
11秒前
852应助xx采纳,获得10
11秒前
11秒前
11秒前
落俗发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515049
求助须知:如何正确求助?哪些是违规求助? 3097391
关于积分的说明 9235300
捐赠科研通 2792358
什么是DOI,文献DOI怎么找? 1532422
邀请新用户注册赠送积分活动 712063
科研通“疑难数据库(出版商)”最低求助积分说明 707107