Contrasting Capability of Single Atom Palladium for Thermocatalytic versus Electrocatalytic Nitrate Reduction Reaction

化学 双金属片 催化作用 选择性 氧化还原 电催化剂 硝酸盐 无机化学 电化学 物理化学 有机化学 电极
作者
Xuanhao Wu,Mohammadreza Nazemi,Srishti Gupta,Adam Chismar,Kiheon Hong,Hunter P. Jacobs,Wenqing Zhang,Kali Rigby,Tayler Hedtke,Qingxiao Wang,Eli Stavitski,Michael S. Wong,Christopher L. Muhich,Jae‐Hong Kim
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:13 (10): 6804-6812 被引量:47
标识
DOI:10.1021/acscatal.3c01285
摘要

The occurrence of high concentrations of nitrate in various water resources is a significant environmental and human health threat, demanding effective removal technologies. Single atom alloys (SAAs) have emerged as a promising bimetallic material architecture in various thermocatalytic and electrocatalytic schemes including nitrate reduction reaction (NRR). This study suggests that there exists a stark contrast between thermocatalytic (T-NRR) and electrocatalytic (E-NRR) pathways that resulted in dramatic differences in SAA performances. Among Pd/Cu nanoalloys with varying Pd–Cu ratios from 1:100 to 100:1, Pd/Cu(1:100) SAA exhibited the greatest activity (TOFPd = 2 min–1) and highest N2 selectivity (94%) for E-NRR, while the same SAA performed poorly for T-NRR as compared to other nanoalloy counterparts. DFT calculations demonstrate that the improved performance and N2 selectivity of Pd/Cu(1:100) in E-NRR compared to T-NRR originate from the higher stability of NO3* in electrocatalysis and a lower N2 formation barrier than NH due to localized pH effects and the ability to extract protons from water. This study establishes the performance and mechanistic differences of SAA and nanoalloys for T-NRR versus E-NRR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tguczf完成签到,获得积分10
1秒前
琳666发布了新的文献求助10
1秒前
theflalash应助风清扬采纳,获得10
1秒前
1秒前
1秒前
小蘑菇应助睡不醒采纳,获得10
2秒前
KEYANMINGONG发布了新的文献求助10
3秒前
张然发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
浮浮世世发布了新的文献求助10
6秒前
JamesPei应助还原苯醌采纳,获得10
6秒前
派大星发布了新的文献求助10
6秒前
7秒前
香蕉觅云应助蒋磊采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
大方万仇发布了新的文献求助10
8秒前
mumufan发布了新的文献求助10
9秒前
10秒前
在水一方应助swh采纳,获得10
10秒前
11秒前
小皮发布了新的文献求助10
11秒前
菲比给菲比的求助进行了留言
11秒前
11秒前
研友_VZG7GZ应助霸气南珍采纳,获得10
11秒前
Akim应助赵浩楠采纳,获得10
11秒前
晴空万里完成签到 ,获得积分10
12秒前
Lucas应助土豆地雷采纳,获得10
12秒前
caidun完成签到,获得积分10
13秒前
lin发布了新的文献求助10
13秒前
13秒前
15秒前
浮游呦呦完成签到,获得积分10
15秒前
16秒前
李凤杞发布了新的文献求助10
16秒前
汤汤发布了新的文献求助10
16秒前
科研通AI6应助张然采纳,获得30
17秒前
桐桐应助dddd采纳,获得10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469408
求助须知:如何正确求助?哪些是违规求助? 4572465
关于积分的说明 14335882
捐赠科研通 4499363
什么是DOI,文献DOI怎么找? 2465032
邀请新用户注册赠送积分活动 1453554
关于科研通互助平台的介绍 1428085