Multi-level uncertainty aware learning for semi-supervised dental panoramic caries segmentation

计算机科学 分割 人工智能 利用 正规化(语言学) 机器学习 模式识别(心理学) 监督学习 任务(项目管理) 特征(语言学) 人工神经网络 语言学 哲学 计算机安全 管理 经济
作者
Xianyun Wang,Sizhe Gao,Kaisheng Jiang,Huicong Zhang,Linhong Wang,Feng Chen,Jun Yu,Fan Yang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:540: 126208-126208 被引量:6
标识
DOI:10.1016/j.neucom.2023.03.069
摘要

Dental caries segmentation based on oral panoramic medical images is a demanding medical task. However, it is challenging to determine imaging diagnosis results as the actual pathological changes under certain conditions, especially in the suspected pathological locations that distinguish the artifacts from the lesions. This paper proposes introducing the semi-supervised learning framework to redistribute the collected cases to set up exact lesion areas and divide suspected areas with uncertainties into unlabeled data instead of reducing dataset labeling costs. Consistent regularization learning allows us to exploit the feature of ambiguous lesions to optimize decision boundaries. Unfortunately, the labels generated by the general SSL method for fuzzy regions are volatile, especially encountering no specific morphological rules and various scales that fluctuate more seriously, making a devastating impact on the regularization training relying on steady prediction. For such a challenge, we consider places that always form stable predictions under various disorders are often highly deterministic. Therefore, we propose introducing multi-level disturbances, including noise, iterative, and multi-scale disturbances. We simultaneously present in-depth supervision training on the multi-layer decoder to form stable and consistent multi-scale intermediate predictions, which significantly enrich the number of samples gathered in the following integration process. Then, Monte Carlo sampling is applied to integrate multi-level prediction results to assemble a more robust uncertainty mask map, which gradually clarifies the inter-class feature representation of actual lesions and artifacts. The extended experiment shows that we have successfully and effectively improved the performance of the caries segmentation task by using such uncertain lesion sample features. The dataset is now public, and the code is available at https://github.com/Zzz512/MLUA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11发布了新的文献求助10
刚刚
刚刚
hhh完成签到,获得积分20
刚刚
刚刚
成成完成签到 ,获得积分10
1秒前
Binbin完成签到,获得积分10
1秒前
乐观静蕾发布了新的文献求助10
1秒前
1秒前
充电宝应助Vivian采纳,获得10
2秒前
CC完成签到 ,获得积分10
2秒前
2秒前
香蕉觅云应助潇洒的布偶采纳,获得10
2秒前
NexusExplorer应助彩色的沛白采纳,获得10
2秒前
3秒前
3秒前
DIDIDI发布了新的文献求助30
3秒前
WENDY完成签到,获得积分10
3秒前
欣新发布了新的文献求助10
3秒前
吃鱼的猫完成签到 ,获得积分10
3秒前
阿粹发布了新的文献求助40
4秒前
4秒前
李子完成签到,获得积分10
4秒前
4秒前
槿萱发布了新的文献求助10
5秒前
LDM完成签到,获得积分10
5秒前
大家好车架号h完成签到,获得积分20
5秒前
5秒前
站走跑完成签到 ,获得积分10
5秒前
科研通AI5应助mio采纳,获得10
5秒前
Anna给Anna的求助进行了留言
5秒前
量子星尘发布了新的文献求助10
6秒前
大侦探皮卡丘完成签到,获得积分10
6秒前
杨帆完成签到,获得积分10
6秒前
6秒前
7秒前
Hello应助腼腆的洪纲采纳,获得10
7秒前
zz发布了新的文献求助30
7秒前
7秒前
chcmuer完成签到,获得积分10
8秒前
8秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663305
求助须知:如何正确求助?哪些是违规求助? 3223962
关于积分的说明 9754101
捐赠科研通 2933829
什么是DOI,文献DOI怎么找? 1606430
邀请新用户注册赠送积分活动 758489
科研通“疑难数据库(出版商)”最低求助积分说明 734809