Segmentation of wheat farmland with improved U-Net on drone images

计算机科学 编码器 分割 背景(考古学) 人工智能 图像分割 核(代数) 模式识别(心理学) 数学 地理 操作系统 考古 组合数学
作者
Guoqi Liu,Lu Bai,Manqi Zhao,Hecang Zang,Guoqing Zheng
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:16 (03) 被引量:4
标识
DOI:10.1117/1.jrs.16.034511
摘要

Accurate farmland segmentation is essential for modern agriculture and automated navigation. We propose an improved U-Net for farmland area segmentation. The wheat farmland data images were collected at the winter wheat experimental base of the Institute of Agricultural Economics and Information, Henan Academy of Agricultural Sciences. U-Net adopts the encoder–decoder structure and skips connection to achieve segmentation. The downsampling operation in the encoder stage weakens the detailed features. The semantic gap between the decoder and the encoder will cause the sparse wheat seedlings in the farmland cannot be captured. Based on the above problems, the improved U-Net uses a multiscale global attention module (MGA) in the bottleneck layer. MGA forms enhanced features by aggregating multiscale global context information and using an improved attention mechanism. An interaction mechanism (IM) is added between the decoder and the encoder. The encoder–decoder IM concatenates multiple attention units and fuses them with the original features on the encoder side to update the input features to the encoder. To lighten the model, we also define two multiplexed convolution kernel sequences in the code, which are shared by all encoders or decoders. The method proposed in this paper is evaluated on the farmland segmentation dataset. Significantly better segmentation results are achieved compared to classical models (U-Net, U-Net++, PSPNet, FPN, and DeepLabV3). In the case of obtaining similar segmentation results, with a smaller amount of parameters compared with State Of The Art (U-Net3+, ACSNet, PraNet, and CCBANet). We also use the farmland data provided by Sichuan Agricultural University for testing, the Dice is 93.88%, which has good generalization performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
古今奇观完成签到 ,获得积分10
1秒前
April完成签到,获得积分0
3秒前
啦啦完成签到 ,获得积分10
3秒前
我要吃饭发布了新的文献求助10
4秒前
mi1486325完成签到,获得积分10
4秒前
基金中中中完成签到,获得积分10
4秒前
summer夏完成签到,获得积分10
4秒前
5秒前
木子酒发布了新的文献求助10
6秒前
6秒前
67完成签到,获得积分10
8秒前
9秒前
真是无奈耶完成签到,获得积分10
9秒前
元谷雪发布了新的文献求助10
9秒前
9秒前
喜之郎完成签到,获得积分10
11秒前
11秒前
11秒前
拼搏的飞薇完成签到,获得积分10
12秒前
刘畅完成签到 ,获得积分10
12秒前
害羞龙猫完成签到 ,获得积分10
13秒前
14秒前
等等发布了新的文献求助10
16秒前
JamesPei应助我要吃饭采纳,获得10
16秒前
科研猫完成签到,获得积分10
16秒前
jxas完成签到,获得积分10
17秒前
所所应助立追拓采纳,获得10
17秒前
18秒前
冰糖葫芦发布了新的文献求助30
18秒前
19秒前
19秒前
20秒前
sonya完成签到 ,获得积分10
21秒前
王嘎嘎完成签到 ,获得积分10
21秒前
goodesBright完成签到,获得积分10
22秒前
心杨完成签到 ,获得积分10
23秒前
毛毛发布了新的文献求助10
24秒前
小彻发布了新的文献求助10
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162769
求助须知:如何正确求助?哪些是违规求助? 2813685
关于积分的说明 7901577
捐赠科研通 2473296
什么是DOI,文献DOI怎么找? 1316715
科研通“疑难数据库(出版商)”最低求助积分说明 631516
版权声明 602175