材料科学
光致发光
钙钛矿(结构)
光电子学
紫外线
光热治疗
荧光粉
激子
发光
纳米技术
化学工程
物理
工程类
量子力学
作者
Zhuang Liu,Xian Qin,Qihao Chen,Qiushui Chen,Yuhang Jing,Zhonghao Zhou,Yong Sheng Zhao,Jingsheng Chen,Xiaogang Liu
标识
DOI:10.1002/adom.202201254
摘要
Abstract Materials that emit in the near‐infrared (NIR) region are at the forefront of both research and industry, mainly due to their wide applications in national security, nondestructive bioimaging, long‐wave communications, and photothermal conversion for medical care. As a key member of the luminescent materials family, metal halide perovskites have been intensively demonstrated to emit light in ultraviolet and visible regions. However, NIR‐emitting perovskites suffer from severe limitations, such as low photoluminescence quantum yield and poor chemical/optical stability, thereby preventing them from practical applications. Herein, the synthesis and growth of Cs 2 MoCl 6 and Cs 2 WCl 6 perovskite single crystals with ultrahigh chemical and optical resistance to heat, moisture, polar solvents, and high‐energy radiation is reported. Upon ultraviolet or blue excitation, these lead‐free single crystals emit light beyond 1100 nm, the longest wavelength ever reported for perovskite hosts. Mechanistic studies indicate that self‐trapped excitons are responsible for the NIR emission. The authors fabricate optoelectronic devices using these single crystals and demonstrate their broad applications in noninvasive palm vein imaging, night vision, and nondestructive food analysis. These results may stimulate research in the development of high‐efficiency NIR perovskite phosphors for fast, accurate biometric identification and food inspection.
科研通智能强力驱动
Strongly Powered by AbleSci AI