Multi-Agent Graph Convolutional Reinforcement Learning for Dynamic Electric Vehicle Charging Pricing

强化学习 联营 计算机科学 动态定价 充电站 图形 分布式计算 人工智能 电动汽车 理论计算机科学 功率(物理) 量子力学 物理 业务 营销
作者
Weijia Zhang,Hao Liu,Jindong Han,Yong Ge,Hui Xiong
标识
DOI:10.1145/3534678.3539416
摘要

Electric Vehicles (EVs) have been emerging as a promising low-carbon transport target. While a large number of public charging stations are available, the use of these stations is often imbalanced, causing many problems to Charging Station Operators (CSOs). To this end, in this paper, we propose a Multi-Agent Graph Convolutional Reinforcement Learning (MAGC) framework to enable CSOs to achieve more effective use of these stations by providing dynamic pricing for each of the continuously arising charging requests with optimizing multiple long-term commercial goals. Specifically, we first formulate this charging station request-specific dynamic pricing problem as a mixed competitive-cooperative multi-agent reinforcement learning task, where each charging station is regarded as an agent. Moreover, by modeling the whole charging market as a dynamic heterogeneous graph, we devise a multi-view heterogeneous graph attention networks to integrate complex interplay between agents induced by their diversified relationships. Then, we propose a shared meta generator to generate individual customized dynamic pricing policies for large-scale yet diverse agents based on the extracted meta characteristics. Finally, we design a contrastive heterogeneous graph pooling representation module to learn a condensed yet effective state action representation to facilitate policy learning of large-scale agents. Extensive experiments on two real-world datasets demonstrate the effectiveness of MAGC and empirically show that the overall use of stations can be improved if all the charging stations in a charging market embrace our dynamic pricing policy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
biuesky完成签到,获得积分10
刚刚
刚刚
天真少年完成签到,获得积分10
刚刚
cdragon完成签到,获得积分10
1秒前
for_abSCI完成签到,获得积分10
1秒前
领导范儿应助Archer采纳,获得10
2秒前
Smartan应助KK采纳,获得10
2秒前
明亮的泥猴桃完成签到,获得积分10
2秒前
3秒前
高贵的酸奶完成签到 ,获得积分10
3秒前
隐形傲霜完成签到 ,获得积分10
3秒前
xutong de完成签到,获得积分10
4秒前
4秒前
miao完成签到,获得积分10
4秒前
4秒前
冰冰发布了新的文献求助10
5秒前
5秒前
6秒前
lqq完成签到,获得积分10
6秒前
6秒前
小白应助水豚采纳,获得10
6秒前
Tough完成签到 ,获得积分10
7秒前
赘婿应助春雷采纳,获得10
8秒前
云起龙都发布了新的文献求助10
8秒前
Danielle完成签到,获得积分10
8秒前
sxx完成签到,获得积分10
8秒前
大哈鱼发布了新的文献求助10
8秒前
10秒前
zty568发布了新的文献求助10
10秒前
wy发布了新的文献求助10
11秒前
niu完成签到,获得积分10
11秒前
所所应助咚咚采纳,获得10
11秒前
11秒前
Castiron应助gj2221423采纳,获得10
11秒前
康琦琦发布了新的文献求助50
11秒前
彭咕咕完成签到,获得积分10
11秒前
郑州12138完成签到,获得积分20
11秒前
Desamin发布了新的文献求助10
11秒前
绝不内耗发布了新的文献求助30
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
Interest Rate Modeling. Volume 1: Foundations and Vanilla Models 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539582
求助须知:如何正确求助?哪些是违规求助? 3117244
关于积分的说明 9329500
捐赠科研通 2814939
什么是DOI,文献DOI怎么找? 1547364
邀请新用户注册赠送积分活动 720872
科研通“疑难数据库(出版商)”最低求助积分说明 712333