Quench-induced Cu-ZnO catalyst for hydrogen production from methanol steam reforming

催化作用 蒸汽重整 甲醇 选择性 制氢 化学工程 无机化学 化学 材料科学 工业催化剂 催化剂载体 有机化学 工程类
作者
Chenxu Guo,Miao Li,Wei‐Ming Guo,Jiawei Xie,Hang Qin,Moyu Liao,Yi Zhang,Gao Pengzhao,Hanning Xiao
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:486: 150331-150331
标识
DOI:10.1016/j.cej.2024.150331
摘要

Methanol steam reforming (MSR) is considered as a promising approach to provide hydrogen for proton-exchange membrane fuel cells. However, it is challenging to develop effective and durable Cu-based catalysts. Herein, Cu-ZnO catalysts are prepared by facile quenching of ZnO in copper nitrate solution followed by reduction to obtain the desired metal loading and induce the doping of surface metal heteroatoms for producing more vacancies. Catalysts enriched with oxygen vacancies can efficiently activate H2O and rapidly transform C-containing intermediates, resulting in higher methanol conversion and lower CO selectivity. As a result, the quenched optimal catalyst achieves 100 % methanol conversion and 0.05 % CO selectivity at 280 ℃, exhibiting the excellent catalytic performance in MSR reaction. In practical applications, structured catalysts are more attractive for large-scale catalytic reactions owing to the low pressure drop and high utilization efficiency. Therefore, ZnO-Cu3 catalyst is coated on cordierite honeycomb ceramics with 100 % methanol conversion and 0.04 % CO selectivity at 280 ℃. After 100 h of the reaction, the structured catalyst remains ∼ 92.3 % with CO selectivity varying from 0.02 to 0.06 %, demonstrating the good catalytic stability in the long-term experiment. In addition, the evolution of reactants and intermediates on the catalyst surface are briefly described by FTIR spectra. This study offers a novel and efficient approach to obtain highly active and durable catalysts with great potential for industrial-scale preparation and application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
严俊东发布了新的文献求助10
刚刚
柠檬发布了新的文献求助20
1秒前
威武怀蕊完成签到,获得积分10
1秒前
xiaozhang完成签到,获得积分10
4秒前
6秒前
Owen应助淡淡听枫采纳,获得10
7秒前
10秒前
柠檬完成签到,获得积分10
10秒前
可靠的书桃应助dai采纳,获得10
10秒前
11秒前
11秒前
老单发布了新的文献求助10
12秒前
12秒前
13秒前
赘婿应助轩海采纳,获得30
14秒前
栗子完成签到,获得积分10
15秒前
15秒前
16秒前
德克医生发布了新的文献求助10
17秒前
11111发布了新的文献求助10
17秒前
Ellery发布了新的文献求助50
17秒前
19秒前
斯文墨镜发布了新的文献求助10
19秒前
等乙天发布了新的文献求助30
20秒前
淡淡听枫发布了新的文献求助10
20秒前
26秒前
所所应助xiaozhang采纳,获得10
26秒前
zxz发布了新的文献求助10
26秒前
27秒前
杨盖发布了新的文献求助10
27秒前
28秒前
跳跃野狼发布了新的文献求助10
29秒前
30秒前
Ellery完成签到,获得积分10
32秒前
32秒前
wu发布了新的文献求助10
34秒前
34秒前
喜欢发布了新的文献求助10
35秒前
36秒前
37秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136624
求助须知:如何正确求助?哪些是违规求助? 2787645
关于积分的说明 7782625
捐赠科研通 2443718
什么是DOI,文献DOI怎么找? 1299386
科研通“疑难数据库(出版商)”最低求助积分说明 625429
版权声明 600954