Quench-induced Cu-ZnO catalyst for hydrogen production from methanol steam reforming

催化作用 蒸汽重整 甲醇 选择性 制氢 化学工程 无机化学 化学 材料科学 工业催化剂 催化剂载体 有机化学 工程类
作者
Chenxu Guo,Miao Li,Wenming Guo,Jiawei Xie,Hang Qin,Moyu Liao,Yi Zhang,Gao Pengzhao,Hanning Xiao
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:486: 150331-150331 被引量:24
标识
DOI:10.1016/j.cej.2024.150331
摘要

Methanol steam reforming (MSR) is considered as a promising approach to provide hydrogen for proton-exchange membrane fuel cells. However, it is challenging to develop effective and durable Cu-based catalysts. Herein, Cu-ZnO catalysts are prepared by facile quenching of ZnO in copper nitrate solution followed by reduction to obtain the desired metal loading and induce the doping of surface metal heteroatoms for producing more vacancies. Catalysts enriched with oxygen vacancies can efficiently activate H2O and rapidly transform C-containing intermediates, resulting in higher methanol conversion and lower CO selectivity. As a result, the quenched optimal catalyst achieves 100 % methanol conversion and 0.05 % CO selectivity at 280 ℃, exhibiting the excellent catalytic performance in MSR reaction. In practical applications, structured catalysts are more attractive for large-scale catalytic reactions owing to the low pressure drop and high utilization efficiency. Therefore, ZnO-Cu3 catalyst is coated on cordierite honeycomb ceramics with 100 % methanol conversion and 0.04 % CO selectivity at 280 ℃. After 100 h of the reaction, the structured catalyst remains ∼ 92.3 % with CO selectivity varying from 0.02 to 0.06 %, demonstrating the good catalytic stability in the long-term experiment. In addition, the evolution of reactants and intermediates on the catalyst surface are briefly described by FTIR spectra. This study offers a novel and efficient approach to obtain highly active and durable catalysts with great potential for industrial-scale preparation and application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
简默发布了新的文献求助10
刚刚
Soyuu完成签到,获得积分20
刚刚
走着完成签到,获得积分10
1秒前
1秒前
依小米完成签到 ,获得积分10
2秒前
sttail应助hu采纳,获得10
2秒前
砚行书完成签到,获得积分10
2秒前
熙怡完成签到,获得积分10
2秒前
乐乐应助一念之间采纳,获得10
2秒前
rsy完成签到,获得积分10
2秒前
芝士完成签到,获得积分10
2秒前
2秒前
3秒前
自然有手就行完成签到,获得积分10
3秒前
huegeeee完成签到,获得积分10
3秒前
3秒前
代代发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
Dean完成签到,获得积分0
4秒前
无情曼易完成签到,获得积分10
4秒前
熙怡发布了新的文献求助10
4秒前
5秒前
aYXZ321完成签到,获得积分10
5秒前
Lucas应助完美的橘子采纳,获得10
5秒前
5秒前
鞠晓蕾完成签到,获得积分10
5秒前
创不可贴完成签到,获得积分10
5秒前
岁岁平安发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
子时月发布了新的文献求助10
6秒前
spw完成签到,获得积分10
6秒前
123xmc完成签到,获得积分10
7秒前
深情的白薇完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017