Quench-induced Cu-ZnO catalyst for hydrogen production from methanol steam reforming

催化作用 蒸汽重整 甲醇 选择性 制氢 化学工程 无机化学 化学 材料科学 工业催化剂 催化剂载体 有机化学 工程类
作者
Chenxu Guo,Miao Li,Wenming Guo,Jiawei Xie,Hang Qin,Moyu Liao,Yi Zhang,Gao Pengzhao,Hanning Xiao
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:486: 150331-150331 被引量:23
标识
DOI:10.1016/j.cej.2024.150331
摘要

Methanol steam reforming (MSR) is considered as a promising approach to provide hydrogen for proton-exchange membrane fuel cells. However, it is challenging to develop effective and durable Cu-based catalysts. Herein, Cu-ZnO catalysts are prepared by facile quenching of ZnO in copper nitrate solution followed by reduction to obtain the desired metal loading and induce the doping of surface metal heteroatoms for producing more vacancies. Catalysts enriched with oxygen vacancies can efficiently activate H2O and rapidly transform C-containing intermediates, resulting in higher methanol conversion and lower CO selectivity. As a result, the quenched optimal catalyst achieves 100 % methanol conversion and 0.05 % CO selectivity at 280 ℃, exhibiting the excellent catalytic performance in MSR reaction. In practical applications, structured catalysts are more attractive for large-scale catalytic reactions owing to the low pressure drop and high utilization efficiency. Therefore, ZnO-Cu3 catalyst is coated on cordierite honeycomb ceramics with 100 % methanol conversion and 0.04 % CO selectivity at 280 ℃. After 100 h of the reaction, the structured catalyst remains ∼ 92.3 % with CO selectivity varying from 0.02 to 0.06 %, demonstrating the good catalytic stability in the long-term experiment. In addition, the evolution of reactants and intermediates on the catalyst surface are briefly described by FTIR spectra. This study offers a novel and efficient approach to obtain highly active and durable catalysts with great potential for industrial-scale preparation and application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kasumin发布了新的文献求助10
刚刚
领导范儿应助炙热百川采纳,获得10
刚刚
1秒前
善学以致用应助xiaoli采纳,获得10
1秒前
sushx完成签到,获得积分10
1秒前
追寻念云完成签到 ,获得积分10
1秒前
浮游应助我爱科研采纳,获得10
2秒前
3秒前
4秒前
233完成签到,获得积分10
4秒前
刘佳玮发布了新的文献求助10
4秒前
领导范儿应助wanghuan采纳,获得10
5秒前
6秒前
7秒前
amll完成签到 ,获得积分10
7秒前
浮游应助我爱科研采纳,获得10
8秒前
会撒娇的芷烟完成签到,获得积分10
8秒前
焦耳爱上微积分应助Nic采纳,获得20
8秒前
一盏壶发布了新的文献求助10
8秒前
LIUDAN完成签到,获得积分10
8秒前
wanci应助西红柿呀采纳,获得10
9秒前
金勇完成签到,获得积分10
9秒前
Jasper应助低位采纳,获得10
9秒前
青芒果发布了新的文献求助10
10秒前
10秒前
隐形的夏云完成签到,获得积分10
10秒前
11秒前
王可完成签到,获得积分20
11秒前
11秒前
LIUDAN发布了新的文献求助10
11秒前
12秒前
zyq1996完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
13秒前
浮游应助我爱科研采纳,获得10
14秒前
14秒前
ho应助Deadlypace采纳,获得10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419911
求助须知:如何正确求助?哪些是违规求助? 4535157
关于积分的说明 14148436
捐赠科研通 4451899
什么是DOI,文献DOI怎么找? 2441961
邀请新用户注册赠送积分活动 1433488
关于科研通互助平台的介绍 1410681