Quench-induced Cu-ZnO catalyst for hydrogen production from methanol steam reforming

催化作用 蒸汽重整 甲醇 选择性 制氢 化学工程 无机化学 化学 材料科学 工业催化剂 催化剂载体 有机化学 工程类
作者
Chenxu Guo,Miao Li,Wenming Guo,Jiawei Xie,Hang Qin,Moyu Liao,Yi Zhang,Gao Pengzhao,Hanning Xiao
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:486: 150331-150331 被引量:24
标识
DOI:10.1016/j.cej.2024.150331
摘要

Methanol steam reforming (MSR) is considered as a promising approach to provide hydrogen for proton-exchange membrane fuel cells. However, it is challenging to develop effective and durable Cu-based catalysts. Herein, Cu-ZnO catalysts are prepared by facile quenching of ZnO in copper nitrate solution followed by reduction to obtain the desired metal loading and induce the doping of surface metal heteroatoms for producing more vacancies. Catalysts enriched with oxygen vacancies can efficiently activate H2O and rapidly transform C-containing intermediates, resulting in higher methanol conversion and lower CO selectivity. As a result, the quenched optimal catalyst achieves 100 % methanol conversion and 0.05 % CO selectivity at 280 ℃, exhibiting the excellent catalytic performance in MSR reaction. In practical applications, structured catalysts are more attractive for large-scale catalytic reactions owing to the low pressure drop and high utilization efficiency. Therefore, ZnO-Cu3 catalyst is coated on cordierite honeycomb ceramics with 100 % methanol conversion and 0.04 % CO selectivity at 280 ℃. After 100 h of the reaction, the structured catalyst remains ∼ 92.3 % with CO selectivity varying from 0.02 to 0.06 %, demonstrating the good catalytic stability in the long-term experiment. In addition, the evolution of reactants and intermediates on the catalyst surface are briefly described by FTIR spectra. This study offers a novel and efficient approach to obtain highly active and durable catalysts with great potential for industrial-scale preparation and application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助vidi采纳,获得10
1秒前
2秒前
2秒前
3秒前
脑洞疼应助紫薇采纳,获得10
3秒前
归尘应助紫薇采纳,获得10
3秒前
丘比特应助紫薇采纳,获得10
3秒前
小马甲应助紫薇采纳,获得10
3秒前
在水一方应助紫薇采纳,获得10
3秒前
充电宝应助紫薇采纳,获得10
3秒前
科研通AI2S应助紫薇采纳,获得10
3秒前
bkagyin应助紫薇采纳,获得10
3秒前
斯文败类应助紫薇采纳,获得10
3秒前
所所应助紫薇采纳,获得10
3秒前
3秒前
白立轩完成签到,获得积分10
4秒前
5秒前
ww发布了新的文献求助10
6秒前
SciGPT应助紧张的惜梦采纳,获得10
6秒前
强健的元冬完成签到,获得积分20
6秒前
6秒前
7秒前
清秀忆枫完成签到,获得积分10
7秒前
8秒前
9秒前
Jasper应助个性的荆采纳,获得10
9秒前
徐进发布了新的文献求助10
9秒前
yh发布了新的文献求助40
10秒前
dyjjudy完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
科研通AI6应助XXDY采纳,获得10
12秒前
二胡儿完成签到,获得积分10
12秒前
完美世界应助祝你开心采纳,获得10
12秒前
zyy完成签到,获得积分10
13秒前
qiuhuajin发布了新的文献求助10
13秒前
14秒前
清秀忆枫发布了新的文献求助10
14秒前
韩小小完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901