An adaptive differential evolution algorithm driven by multiple probabilistic mutation strategies for influence maximization in social networks

概率逻辑 最大化 适应性突变 突变 差速器(机械装置) 差异进化 计算机科学 算法 期望最大化算法 数学优化 人工智能 遗传算法 数学 机器学习 遗传学 生物 物理 最大似然 统计 基因 热力学
作者
Jianxin Tang,Qian Du,Jitao Qu,Yihui Li,Lihong Han
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3915605/v1
摘要

Abstract The influence maximization is regarded as one of the most pivotal concerns in social network analysis especially in the inevitable trend that more and more individuals are being involved into the global networked society. The purpose of the problem is to identify a set of influential nodes from the social network and activate them to maximize the expected number of influenced nodes at the end of the spreading process. Although some meta-heuristics based on swarm intelligence or biological evolution have been proposed to tackle this intractable problem, the exploration and exploitation operations need further investigated according to the iterative information of the evolutionary process. In this paper, an adaptive differential evolution algorithm driven by multiple probabilistic mutation strategies is proposed for the influence maximization problem. To provide more adequate seed set by utilizing the differential evolution, the mutation in the framework, consisted by three policies, namely particle swarm mutation strategy, differential mutation strategy, and perturbation strategy, is implied based on different probabilistic models. An adaptive local search strategy is presented to improve the local optimum based on a potential substitution pool consisting of structural hole nodes. Experimental results on six real-world social networks demonstrate that the proposed algorithm shows competitive performance in terms of both efficacy and efficiency when compared to the state-of-the-art algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tanx发布了新的文献求助10
1秒前
2秒前
Xavier发布了新的文献求助10
3秒前
zmy完成签到,获得积分10
3秒前
欲扬先抑发布了新的文献求助10
3秒前
CodeCraft应助钱大大采纳,获得10
3秒前
端庄新柔发布了新的文献求助10
4秒前
慕青应助悦耳青梦采纳,获得10
4秒前
5秒前
黄辉冯完成签到,获得积分10
6秒前
Lucas完成签到,获得积分10
6秒前
蟹蟹发布了新的文献求助10
6秒前
帅气书白发布了新的文献求助10
6秒前
shiqi发布了新的文献求助10
7秒前
7秒前
7秒前
jeniffer完成签到,获得积分10
8秒前
酷波er应助端庄新柔采纳,获得10
10秒前
guohh发布了新的文献求助20
10秒前
10秒前
彩色觅荷完成签到,获得积分10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
leslie应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得30
12秒前
BareBear应助科研通管家采纳,获得10
12秒前
12秒前
1111111111应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
BareBear应助科研通管家采纳,获得10
12秒前
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
Frim发布了新的文献求助10
12秒前
英姑应助水123采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601468
求助须知:如何正确求助?哪些是违规求助? 4686975
关于积分的说明 14846893
捐赠科研通 4681115
什么是DOI,文献DOI怎么找? 2539378
邀请新用户注册赠送积分活动 1506298
关于科研通互助平台的介绍 1471297