MSGNet: Multi-Scale Grid Based Automatic Cardiac Arrhythmia Detection in 12-Lead ECG

比例(比率) 计算机科学 心律失常 铅(地质) 网格 人工智能 心脏病学 医学 地质学 心房颤动 地图学 大地测量学 地貌学 地理
作者
Changqing Ji,Liyong Wang,Jing Qin,Shulong Zhang,Y. A. Han,Zumin Wang
标识
DOI:10.1109/swc57546.2023.10448925
摘要

The electrocardiogram (ECG) is a commonly used medical diagnostic tool for detecting various cardiac arrhythmias. Abnormal ECG signals are identified by distorted heartbeat morphology and irregular intervals. Traditional ECG analysis methods mainly rely on single-lead or single-scale signal segments, which overlook the potentially complementary information across the 12 leads and different scales. In this paper, we propose a novel Multi-Scale Grid based Network (MSGNet) for automatic cardiac arrhythmia detection in 12-lead ECG. MSGNet can extract spatial features of 12-lead ECG signals on different channels and temporal features of different scales on the same channel to effectively capture the features of distorted heartbeat morphology and irregular intervals. By fusing the morphological features of different channels, MSGNet extracts more diverse features from different spatial dimensions. Furthermore, we designed a multi-scale grid based feature extraction strategy to extract features of signal segments of various sizes at different scales. MSGNet integrates these two feature extraction strategies to simultaneously focus on both the morphological features of different leads and the temporal features within the same lead. We evaluated the performance of MSGNet on the publicly available ECG dataset CPSC 2018 and compared it with other existing ECG classification models. The experimental results show that MSGNet outperforms other existing ECG classification models, achieving an F1 score of 0.858 on this dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助neko采纳,获得10
刚刚
薯愿发布了新的文献求助10
1秒前
1秒前
坦率的棉花糖完成签到 ,获得积分10
2秒前
2秒前
taotao发布了新的文献求助10
3秒前
3秒前
Angela完成签到,获得积分10
3秒前
优势构象发布了新的文献求助10
5秒前
啊啊啊肥发布了新的文献求助10
5秒前
6秒前
秋叶发布了新的文献求助10
6秒前
6秒前
Ronggaz发布了新的文献求助10
6秒前
SRsora完成签到,获得积分10
7秒前
wushengdeyu完成签到,获得积分10
8秒前
9秒前
科研通AI5应助HJJHJH采纳,获得50
9秒前
10秒前
11秒前
天天快乐应助linxi采纳,获得10
11秒前
优势构象完成签到,获得积分10
12秒前
12秒前
miao发布了新的文献求助10
13秒前
xzh发布了新的文献求助10
15秒前
15秒前
曲奇完成签到,获得积分10
16秒前
饼冰饼发布了新的文献求助10
17秒前
科研通AI5应助taotao采纳,获得10
18秒前
19秒前
尊敬雅容应助滕擎采纳,获得20
19秒前
20秒前
dengdeng完成签到,获得积分20
21秒前
replay完成签到,获得积分10
21秒前
sci发布了新的文献求助10
21秒前
22秒前
22秒前
科研通AI2S应助xzh采纳,获得10
22秒前
SPUwangshunfeng完成签到,获得积分10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668063
求助须知:如何正确求助?哪些是违规求助? 3226515
关于积分的说明 9769764
捐赠科研通 2936459
什么是DOI,文献DOI怎么找? 1608572
邀请新用户注册赠送积分活动 759665
科研通“疑难数据库(出版商)”最低求助积分说明 735460