Machine learning to detect the SINEs of cancer

癌症 计算生物学 分析物 非整倍体 肿瘤科 DNA测序 生物 内科学 医学 计算机科学 生物信息学 DNA 遗传学 染色体 基因 化学 色谱法
作者
Christopher Douville,Kamel Lahouel,Albert Kuo,Haley Grant,Bracha Erlanger Avigdor,Samuel D. Curtis,Mahmoud Summers,Joshua D. Cohen,Yuxuan Wang,Austin K. Mattox,Jonathan C. Dudley,Lisa Dobbyn,Maria Popoli,Janine Ptak,Nadine T. Nehme,Natalie Silliman,Cheríe Blair,Katharine Romans,Christopher J. Thoburn,Jennifer Gizzi
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science (AAAS)]
卷期号:16 (731) 被引量:14
标识
DOI:10.1126/scitranslmed.adi3883
摘要

We previously described an approach called RealSeqS to evaluate aneuploidy in plasma cell-free DNA through the amplification of ~350,000 repeated elements with a single primer. We hypothesized that an unbiased evaluation of the large amount of sequencing data obtained with RealSeqS might reveal other differences between plasma samples from patients with and without cancer. This hypothesis was tested through the development of a machine learning approach called Alu Profile Learning Using Sequencing (A-PLUS) and its application to 7615 samples from 5178 individuals, 2073 with solid cancer and the remainder without cancer. Samples from patients with cancer and controls were prespecified into four cohorts used for model training, analyte integration, and threshold determination, validation, and reproducibility. A-PLUS alone provided a sensitivity of 40.5% across 11 different cancer types in the validation cohort, at a specificity of 98.5%. Combining A-PLUS with aneuploidy and eight common protein biomarkers detected 51% of the cancers at 98.9% specificity. We found that part of the power of A-PLUS could be ascribed to a single feature—the global reduction of AluS subfamily elements in the circulating DNA of patients with solid cancer. We confirmed this reduction through the analysis of another independent dataset obtained with a different approach (whole-genome sequencing). The evaluation of Alu elements may therefore have the potential to enhance the performance of several methods designed for the earlier detection of cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哇owao完成签到,获得积分10
刚刚
好好学习完成签到,获得积分10
刚刚
like411发布了新的文献求助10
刚刚
脑洞疼应助Maestro_S采纳,获得10
1秒前
不会学习的小郭完成签到 ,获得积分10
1秒前
葡萄树完成签到,获得积分10
1秒前
xwhl发布了新的文献求助10
2秒前
高高黄豆完成签到 ,获得积分10
2秒前
3秒前
英俊的铭应助PaoPao采纳,获得10
3秒前
4秒前
4秒前
4秒前
5秒前
LAIII完成签到,获得积分10
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
8秒前
8秒前
poppy发布了新的文献求助10
9秒前
mango524发布了新的文献求助10
9秒前
小侯发布了新的文献求助10
9秒前
Huang完成签到,获得积分10
9秒前
10秒前
1yoyo1发布了新的文献求助10
10秒前
六节为名发布了新的文献求助10
10秒前
10秒前
核动力路灯完成签到,获得积分10
11秒前
昏睡的嵩完成签到,获得积分10
11秒前
不安白秋发布了新的文献求助10
12秒前
12秒前
13秒前
Vegetable_Dog发布了新的文献求助10
13秒前
13秒前
cml完成签到,获得积分20
14秒前
元谷雪发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783916
求助须知:如何正确求助?哪些是违规求助? 5679757
关于积分的说明 15462629
捐赠科研通 4913287
什么是DOI,文献DOI怎么找? 2644568
邀请新用户注册赠送积分活动 1592378
关于科研通互助平台的介绍 1547002