Machine learning to detect the SINEs of cancer

癌症 计算生物学 分析物 非整倍体 肿瘤科 DNA测序 生物 内科学 医学 计算机科学 生物信息学 DNA 遗传学 染色体 基因 化学 色谱法
作者
Christopher Douville,Kamel Lahouel,Albert Kuo,Haley Grant,Bracha Erlanger Avigdor,Samuel D. Curtis,Mahmoud Summers,Joshua D. Cohen,Yuxuan Wang,Austin K. Mattox,Jonathan C. Dudley,Lisa Dobbyn,Maria Popoli,Janine Ptak,Nadine T. Nehme,Natalie Silliman,Cheríe Blair,Katharine Romans,Christopher J. Thoburn,Jennifer Gizzi
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science (AAAS)]
卷期号:16 (731) 被引量:14
标识
DOI:10.1126/scitranslmed.adi3883
摘要

We previously described an approach called RealSeqS to evaluate aneuploidy in plasma cell-free DNA through the amplification of ~350,000 repeated elements with a single primer. We hypothesized that an unbiased evaluation of the large amount of sequencing data obtained with RealSeqS might reveal other differences between plasma samples from patients with and without cancer. This hypothesis was tested through the development of a machine learning approach called Alu Profile Learning Using Sequencing (A-PLUS) and its application to 7615 samples from 5178 individuals, 2073 with solid cancer and the remainder without cancer. Samples from patients with cancer and controls were prespecified into four cohorts used for model training, analyte integration, and threshold determination, validation, and reproducibility. A-PLUS alone provided a sensitivity of 40.5% across 11 different cancer types in the validation cohort, at a specificity of 98.5%. Combining A-PLUS with aneuploidy and eight common protein biomarkers detected 51% of the cancers at 98.9% specificity. We found that part of the power of A-PLUS could be ascribed to a single feature—the global reduction of AluS subfamily elements in the circulating DNA of patients with solid cancer. We confirmed this reduction through the analysis of another independent dataset obtained with a different approach (whole-genome sequencing). The evaluation of Alu elements may therefore have the potential to enhance the performance of several methods designed for the earlier detection of cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾萧发布了新的文献求助10
刚刚
小手冰凉发布了新的文献求助10
刚刚
归尘发布了新的文献求助10
刚刚
fwwyy发布了新的文献求助10
刚刚
c7发布了新的文献求助10
1秒前
2秒前
2秒前
科研通AI6应助咩咩羊采纳,获得10
2秒前
华仔应助小仙人球采纳,获得10
2秒前
2秒前
斯文听筠发布了新的文献求助10
3秒前
LL关注了科研通微信公众号
3秒前
afrex完成签到,获得积分10
4秒前
4秒前
南风发布了新的文献求助10
4秒前
傻子也能搞学术吗完成签到 ,获得积分10
5秒前
肥波爱吃鱼完成签到,获得积分10
5秒前
5秒前
田様应助123采纳,获得10
5秒前
奋斗发布了新的文献求助10
5秒前
风间琉璃完成签到,获得积分10
5秒前
6秒前
顾矜应助林夕采纳,获得10
6秒前
6秒前
抵澳报了完成签到,获得积分0
6秒前
狂野的晓曼完成签到,获得积分10
7秒前
7秒前
7秒前
研友_n2r2Kn完成签到,获得积分10
7秒前
Ehgnix完成签到,获得积分10
7秒前
科研通AI6应助香香香采纳,获得30
8秒前
8秒前
晨曦完成签到,获得积分10
8秒前
wendinfgmei发布了新的文献求助10
8秒前
别止完成签到,获得积分10
8秒前
清脆水云发布了新的文献求助10
8秒前
9秒前
Ruoru发布了新的文献求助10
9秒前
9秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587104
求助须知:如何正确求助?哪些是违规求助? 4670242
关于积分的说明 14781891
捐赠科研通 4621991
什么是DOI,文献DOI怎么找? 2531119
邀请新用户注册赠送积分活动 1499924
关于科研通互助平台的介绍 1468015