Machine learning to detect the SINEs of cancer

癌症 计算生物学 分析物 非整倍体 肿瘤科 DNA测序 生物 内科学 医学 计算机科学 生物信息学 DNA 遗传学 染色体 基因 化学 色谱法
作者
Christopher Douville,Kamel Lahouel,Albert Kuo,Haley Grant,Bracha Erlanger Avigdor,Samuel D. Curtis,Mahmoud Summers,Joshua D. Cohen,Yuxuan Wang,Austin K. Mattox,Jonathan C. Dudley,Lisa Dobbyn,Maria Popoli,Janine Ptak,Nadine T. Nehme,Natalie Silliman,Cheríe Blair,Katharine Romans,Christopher Thoburn,Jennifer Gizzi,Robert E. Schoen,Jeanne Tie,Peter Gibbs,Lan T. Ho‐Pham,Bich Tran,Thach Tran,Tuan V. Nguyen,Michael Goggins,Christopher L. Wolfgang,Tian‐Li Wang,Ie‐Ming Shih,Anne Marie Lennon,Ralph H. Hruban,Chetan Bettegowda,Kenneth W. Kinzler,Nickolas Papadopoulos,Bert Vogelstein,Cristian Tomasetti
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science (AAAS)]
卷期号:16 (731) 被引量:2
标识
DOI:10.1126/scitranslmed.adi3883
摘要

We previously described an approach called RealSeqS to evaluate aneuploidy in plasma cell-free DNA through the amplification of ~350,000 repeated elements with a single primer. We hypothesized that an unbiased evaluation of the large amount of sequencing data obtained with RealSeqS might reveal other differences between plasma samples from patients with and without cancer. This hypothesis was tested through the development of a machine learning approach called Alu Profile Learning Using Sequencing (A-PLUS) and its application to 7615 samples from 5178 individuals, 2073 with solid cancer and the remainder without cancer. Samples from patients with cancer and controls were prespecified into four cohorts used for model training, analyte integration, and threshold determination, validation, and reproducibility. A-PLUS alone provided a sensitivity of 40.5% across 11 different cancer types in the validation cohort, at a specificity of 98.5%. Combining A-PLUS with aneuploidy and eight common protein biomarkers detected 51% of the cancers at 98.9% specificity. We found that part of the power of A-PLUS could be ascribed to a single feature—the global reduction of AluS subfamily elements in the circulating DNA of patients with solid cancer. We confirmed this reduction through the analysis of another independent dataset obtained with a different approach (whole-genome sequencing). The evaluation of Alu elements may therefore have the potential to enhance the performance of several methods designed for the earlier detection of cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yang完成签到,获得积分10
刚刚
fino完成签到,获得积分10
刚刚
困困咪应助韭菜盒子采纳,获得10
刚刚
今后应助asd采纳,获得10
刚刚
caozhanbo完成签到,获得积分10
刚刚
洛川完成签到,获得积分10
1秒前
等待忘幽完成签到,获得积分10
2秒前
娥娥给娥娥的求助进行了留言
3秒前
潇洒雁枫完成签到,获得积分10
3秒前
3秒前
脑洞疼应助好了采纳,获得10
3秒前
李健的小迷弟应助bingsu108采纳,获得10
3秒前
无花果应助zj采纳,获得10
4秒前
4秒前
4秒前
万能图书馆应助Ck采纳,获得10
4秒前
4秒前
QDU应助闪闪的小珍采纳,获得10
6秒前
dz完成签到,获得积分10
6秒前
6秒前
打打应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
劲秉应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
LXZ发布了新的文献求助10
7秒前
张亚慧发布了新的文献求助10
7秒前
xinxinqi完成签到 ,获得积分10
7秒前
8秒前
jasmineyy发布了新的文献求助10
8秒前
8秒前
研友_VZG7GZ应助活泼宛海采纳,获得10
9秒前
Lyubb完成签到,获得积分10
10秒前
10秒前
雨中漫步完成签到,获得积分10
11秒前
汉堡包应助余生采纳,获得10
11秒前
英姑应助典雅的俊驰采纳,获得10
11秒前
我是老大应助newwave111采纳,获得10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
An Introduction to Child Language 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299125
求助须知:如何正确求助?哪些是违规求助? 2934137
关于积分的说明 8467404
捐赠科研通 2607589
什么是DOI,文献DOI怎么找? 1423778
科研通“疑难数据库(出版商)”最低求助积分说明 661689
邀请新用户注册赠送积分活动 645351