Machine learning to detect the SINEs of cancer

癌症 计算生物学 分析物 非整倍体 肿瘤科 DNA测序 生物 内科学 医学 计算机科学 生物信息学 DNA 遗传学 染色体 基因 化学 色谱法
作者
Christopher Douville,Kamel Lahouel,Albert Kuo,Haley Grant,Bracha Erlanger Avigdor,Samuel D. Curtis,Mahmoud Summers,Joshua D. Cohen,Yuxuan Wang,Austin K. Mattox,Jonathan C. Dudley,Lisa Dobbyn,Maria Popoli,Janine Ptak,Nadine T. Nehme,Natalie Silliman,Cheríe Blair,Katharine Romans,Christopher Thoburn,Jennifer Gizzi,Robert E. Schoen,Jeanne Tie,Peter Gibbs,Lan T. Ho‐Pham,Bich Tran,Thach Tran,Tuan V. Nguyen,Michael Goggins,Christopher L. Wolfgang,Tian‐Li Wang,Ie‐Ming Shih,Anne Marie Lennon,Ralph H. Hruban,Chetan Bettegowda,Kenneth W. Kinzler,Nickolas Papadopoulos,Bert Vogelstein,Cristian Tomasetti
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science]
卷期号:16 (731) 被引量:4
标识
DOI:10.1126/scitranslmed.adi3883
摘要

We previously described an approach called RealSeqS to evaluate aneuploidy in plasma cell-free DNA through the amplification of ~350,000 repeated elements with a single primer. We hypothesized that an unbiased evaluation of the large amount of sequencing data obtained with RealSeqS might reveal other differences between plasma samples from patients with and without cancer. This hypothesis was tested through the development of a machine learning approach called Alu Profile Learning Using Sequencing (A-PLUS) and its application to 7615 samples from 5178 individuals, 2073 with solid cancer and the remainder without cancer. Samples from patients with cancer and controls were prespecified into four cohorts used for model training, analyte integration, and threshold determination, validation, and reproducibility. A-PLUS alone provided a sensitivity of 40.5% across 11 different cancer types in the validation cohort, at a specificity of 98.5%. Combining A-PLUS with aneuploidy and eight common protein biomarkers detected 51% of the cancers at 98.9% specificity. We found that part of the power of A-PLUS could be ascribed to a single feature—the global reduction of AluS subfamily elements in the circulating DNA of patients with solid cancer. We confirmed this reduction through the analysis of another independent dataset obtained with a different approach (whole-genome sequencing). The evaluation of Alu elements may therefore have the potential to enhance the performance of several methods designed for the earlier detection of cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿姨洗铁路完成签到 ,获得积分10
5秒前
抹不掉的记忆完成签到,获得积分10
7秒前
7秒前
余杭村王小虎完成签到,获得积分10
8秒前
韭黄完成签到,获得积分20
12秒前
jeffrey完成签到,获得积分10
12秒前
Rondab应助机灵枕头采纳,获得10
18秒前
佳无夜完成签到,获得积分10
23秒前
摆哥完成签到,获得积分10
27秒前
66完成签到,获得积分10
32秒前
zlqq完成签到 ,获得积分10
32秒前
Hardskills发布了新的文献求助10
35秒前
36秒前
之_ZH完成签到 ,获得积分10
44秒前
gds2021完成签到 ,获得积分10
46秒前
你好呀嘻嘻完成签到 ,获得积分10
46秒前
梅特卡夫完成签到,获得积分10
48秒前
熊雅完成签到,获得积分10
49秒前
51秒前
睡到自然醒完成签到 ,获得积分10
52秒前
cis2014完成签到,获得积分10
54秒前
独特的大有完成签到 ,获得积分10
54秒前
量子星尘发布了新的文献求助10
55秒前
57秒前
xingyi完成签到,获得积分10
59秒前
1分钟前
舒心的秋荷完成签到 ,获得积分10
1分钟前
zz123发布了新的文献求助10
1分钟前
liaomr完成签到 ,获得积分10
1分钟前
粗犷的灵松完成签到,获得积分10
1分钟前
吃小孩的妖怪完成签到 ,获得积分10
1分钟前
ncuwzq完成签到,获得积分10
1分钟前
yshj完成签到 ,获得积分10
1分钟前
1分钟前
净禅完成签到 ,获得积分10
1分钟前
1分钟前
迷人的寒风完成签到,获得积分10
1分钟前
1分钟前
water应助科研通管家采纳,获得10
1分钟前
Lucas应助HHHAN采纳,获得10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022