Comprehensive Review of Drug–Drug Interaction Prediction Based on Machine Learning: Current Status, Challenges, and Opportunities

人气 计算机科学 机器学习 人工智能 药品 药物与药物的相互作用 数据科学 药物开发 药理学 医学 心理学 社会心理学
作者
Sheng Wang,Bei Zhu,Xinliang Li,Shao Liu,Jian‐Yu Shi,Dongsheng Cao
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (1): 96-109 被引量:3
标识
DOI:10.1021/acs.jcim.3c01304
摘要

Detecting drug–drug interactions (DDIs) is an essential step in drug development and drug administration. Given the shortcomings of current experimental methods, the machine learning (ML) approach has become a reliable alternative, attracting extensive attention from the academic and industrial fields. With the rapid development of computational science and the growing popularity of cross-disciplinary research, a large number of DDI prediction studies based on ML methods have been published in recent years. To give an insight into the current situation and future direction of DDI prediction research, we systemically review these studies from three aspects: (1) the classic DDI databases, mainly including databases of drugs, side effects, and DDI information; (2) commonly used drug attributes, which focus on chemical, biological, and phenotypic attributes for representing drugs; (3) popular ML approaches, such as shallow learning-based, deep learning-based, recommender system-based, and knowledge graph-based methods for DDI detection. For each section, related studies are described, summarized, and compared, respectively. In the end, we conclude the research status of DDI prediction based on ML methods and point out the existing issues, future challenges, potential opportunities, and subsequent research direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Ava应助于小鱼采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
Yolo发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
li发布了新的文献求助10
3秒前
t1234567完成签到,获得积分10
4秒前
Ganlou应助清脆的冷松采纳,获得10
4秒前
4秒前
4秒前
dhfify发布了新的文献求助10
4秒前
4秒前
xiaoguan完成签到,获得积分10
4秒前
4秒前
123发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
打打应助Gardenia2001采纳,获得10
5秒前
大布丁完成签到,获得积分10
5秒前
阔达的念芹完成签到,获得积分10
6秒前
dhfify发布了新的文献求助10
6秒前
欢呼山雁发布了新的文献求助30
6秒前
dhfify发布了新的文献求助10
6秒前
t1234567发布了新的文献求助10
7秒前
7秒前
7秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309308
求助须知:如何正确求助?哪些是违规求助? 2942666
关于积分的说明 8510202
捐赠科研通 2617790
什么是DOI,文献DOI怎么找? 1430403
科研通“疑难数据库(出版商)”最低求助积分说明 664123
邀请新用户注册赠送积分活动 649286