Interpretable and Intuitive Machine Learning Approaches for Predicting Disability Progression in Relapsing-Remitting Multiple Sclerosis Based on Clinical and Gray Matter Atrophy Indicators

复发-缓解 可解释性 多发性硬化 逻辑回归 扩大残疾状况量表 队列 人工智能 无线电技术 临床孤立综合征 机器学习 计算机科学 医学 内科学 放射科 疾病 精神科
作者
Zichun Yan,Zhuowei Shi,Qiyuan Zhu,Jinzhou Feng,Yaou Liu,Yuxin Li,Fuqing Zhou,Zhizheng Zhuo,Shuang Ding,Xiaohua Wang,Feiyue Yin,Yang Tang,Bing Lin,Yongmei Li
出处
期刊:Academic Radiology [Elsevier]
被引量:3
标识
DOI:10.1016/j.acra.2024.01.032
摘要

Rationale and Objectives

To investigate whether clinical and gray matter (GM) atrophy indicators can predict disability in relapsing-remitting multiple sclerosis (RRMS) and to enhance the interpretability and intuitiveness of a predictive machine learning model.

Materials and methods

145 and 50 RRMS patients with structural MRI and at least 1-year follow-up Expanded Disability Status Scale (EDSS) results were retrospectively enrolled and placed in the discovery and external test cohorts, respectively. Six clinical and radiomics feature-based machine learning classifiers were trained and tested to predict disability progression in the discovery cohort and validated in the external test set. Partial dependence plot (PDP) analysis and a Shiny web application were conducted to enhance the interpretability and intuitiveness.

Results

In the discovery cohort, 98 patients had disability stability, and 47 patients were classified as having disability progression. In the external test set, 35 patients were disability stable, and 15 patients had disability progression. Models trained with both clinical and radiomics features (area under the curve (AUC), 0.725–0.950) outperformed those trained with clinical (AUC, 0.600–0.740) or radiomics features only (AUC, 0.615–0.945). Among clinical+ radiomics feature models, the logistic regression (LR) classifier-based model performed best, with an AUC of 0.950. Only the radiomics feature-only models were applied in the external test set due to the data collection problem and showed fair performance, with AUCs ranging from 0.617 to 0.753. PDP analysis showed that female patients and those with lower volume, surface area, and symbol digit modalities test (SDMT) scores; greater mean curvature and age; and no disease modifying therapy (DMT) had increased probabilities of disease progression. Finally, a Shiny web application (https://lauralin1104.shinyapps.io/LRshiny/) was developed to calculate the risk of disability progression.

Conclusion

Interpretable and intuitive machine learning approaches based on clinical and GM atrophy indicators can help physicians predict disability progression in RRMS patients for clinical decision-making and patient management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
zty发布了新的文献求助10
刚刚
研友_VZG7GZ应助陈天爱学习采纳,获得10
1秒前
大侦探皮卡丘完成签到,获得积分10
2秒前
王喂喂哦啊嗯完成签到,获得积分20
2秒前
2秒前
2秒前
Nancy完成签到,获得积分10
2秒前
今后应助乐乐乐乐乐乐采纳,获得10
2秒前
小马甲应助乐乐乐乐乐乐采纳,获得10
2秒前
英姑应助闫闫采纳,获得10
2秒前
3秒前
fvnsj发布了新的文献求助20
3秒前
小二郎应助Nancy采纳,获得10
5秒前
ceci发布了新的文献求助10
5秒前
by6868完成签到,获得积分10
6秒前
7秒前
积极的箴发布了新的文献求助10
7秒前
小飞棍完成签到,获得积分10
8秒前
充电宝应助严昌采纳,获得10
8秒前
周同学发布了新的文献求助10
9秒前
9秒前
等待忆安完成签到,获得积分10
9秒前
袁硕发布了新的文献求助30
9秒前
10秒前
diyaju完成签到,获得积分10
10秒前
zzzlll发布了新的文献求助10
11秒前
12秒前
小奕发布了新的文献求助10
12秒前
12秒前
12秒前
来来发布了新的文献求助10
14秒前
yang完成签到,获得积分10
14秒前
14秒前
今后应助zty采纳,获得10
14秒前
14秒前
桐桐应助ff采纳,获得10
14秒前
黎笙发布了新的文献求助200
17秒前
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145542
求助须知:如何正确求助?哪些是违规求助? 2796967
关于积分的说明 7822284
捐赠科研通 2453262
什么是DOI,文献DOI怎么找? 1305570
科研通“疑难数据库(出版商)”最低求助积分说明 627512
版权声明 601464