亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Drug–Protein Interactions through Branch-Chain Mining and multi-dimensional attention network

计算机科学 药物发现 水准点(测量) 人工智能 药物重新定位 卷积神经网络 机制(生物学) 机器学习 深度学习 重新调整用途 蛋白质结构预测 药物开发 数据挖掘 药品 生物信息学 蛋白质结构 化学 医学 生物 认识论 精神科 生物化学 哲学 生态学 地理 大地测量学
作者
Zhuo Huang,Qiu Xiao,Tuo Xiong,Wanwan Shi,Yide Yang,Guanghui Li
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:171: 108127-108127
标识
DOI:10.1016/j.compbiomed.2024.108127
摘要

Identifying drug–protein interactions (DPIs) is crucial in drug discovery and repurposing. Computational methods for precise DPI identification can expedite development timelines and reduce expenses compared with conventional experimental methods. Lately, deep learning techniques have been employed for predicting DPIs, enhancing these processes. Nevertheless, the limitations observed in prior studies, where many extract features from complete drug and protein entities, overlooking the crucial theoretical foundation that pharmacological responses are often correlated with specific substructures, can lead to poor predictive performance. Furthermore, certain substructure-focused research confines its exploration to a solitary fragment category, such as a functional group. In this study, addressing these constraints, we present an end-to-end framework termed BCMMDA for predicting DPIs. The framework considers various substructure types, including branch chains, common substructures, and specific fragments. We designed a specific feature learning module by combining our proposed multi-dimensional attention mechanism with convolutional neural networks (CNNs). Deep CNNs assist in capturing the synergistic effects among these fragment sets, enabling the extraction of relevant features of drugs and proteins. Meanwhile, the multi-dimensional attention mechanism refines the relationship between drug and protein features by assigning attention vectors to each drug compound and amino acid. This mechanism empowers the model to further concentrate on pivotal substructures and elements, thereby improving its ability to identify essential interactions in DPI prediction. We evaluated the performance of BCMMDA on four well-known benchmark datasets. The results indicated that BCMMDA outperformed state-of-the-art baseline models, demonstrating significant improvement in performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
欣慰外套完成签到 ,获得积分10
17秒前
yindi1991完成签到 ,获得积分10
36秒前
52秒前
量子星尘发布了新的文献求助10
1分钟前
美满的小蘑菇完成签到 ,获得积分10
1分钟前
2分钟前
乐乐应助科研通管家采纳,获得10
2分钟前
3分钟前
瘦瘦的枫叶完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
陀思妥耶夫斯基完成签到 ,获得积分10
3分钟前
张杰列夫完成签到 ,获得积分10
4分钟前
JamesPei应助科研通管家采纳,获得10
4分钟前
馆长应助科研通管家采纳,获得20
4分钟前
馆长应助科研通管家采纳,获得10
4分钟前
馆长应助科研通管家采纳,获得10
4分钟前
花落无声完成签到 ,获得积分10
5分钟前
5分钟前
Lily完成签到,获得积分10
5分钟前
5分钟前
Lily发布了新的文献求助10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
Jim完成签到,获得积分10
6分钟前
6分钟前
Shuo应助科研通管家采纳,获得20
6分钟前
慕青应助科研通管家采纳,获得10
6分钟前
lzxbarry应助科研通管家采纳,获得50
6分钟前
lzxbarry应助科研通管家采纳,获得50
6分钟前
7分钟前
Hodlumm完成签到,获得积分10
7分钟前
LArry完成签到,获得积分10
7分钟前
Orange应助TXZ06采纳,获得10
7分钟前
英姑应助zwang688采纳,获得10
7分钟前
星辰大海应助TXZ06采纳,获得10
7分钟前
思源应助mervin采纳,获得10
7分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596068
求助须知:如何正确求助?哪些是违规求助? 4008190
关于积分的说明 12408923
捐赠科研通 3687090
什么是DOI,文献DOI怎么找? 2032193
邀请新用户注册赠送积分活动 1065428
科研通“疑难数据库(出版商)”最低求助积分说明 950759