Predicting Drug–Protein Interactions through Branch-Chain Mining and multi-dimensional attention network

计算机科学 药物发现 水准点(测量) 人工智能 药物重新定位 卷积神经网络 机制(生物学) 机器学习 深度学习 重新调整用途 蛋白质结构预测 药物开发 数据挖掘 药品 生物信息学 蛋白质结构 化学 医学 生态学 哲学 生物化学 大地测量学 认识论 精神科 生物 地理
作者
Zhuo Huang,Qiu Xiao,Tuo Xiong,Wanwan Shi,Yide Yang,Guanghui Li
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:171: 108127-108127
标识
DOI:10.1016/j.compbiomed.2024.108127
摘要

Identifying drug–protein interactions (DPIs) is crucial in drug discovery and repurposing. Computational methods for precise DPI identification can expedite development timelines and reduce expenses compared with conventional experimental methods. Lately, deep learning techniques have been employed for predicting DPIs, enhancing these processes. Nevertheless, the limitations observed in prior studies, where many extract features from complete drug and protein entities, overlooking the crucial theoretical foundation that pharmacological responses are often correlated with specific substructures, can lead to poor predictive performance. Furthermore, certain substructure-focused research confines its exploration to a solitary fragment category, such as a functional group. In this study, addressing these constraints, we present an end-to-end framework termed BCMMDA for predicting DPIs. The framework considers various substructure types, including branch chains, common substructures, and specific fragments. We designed a specific feature learning module by combining our proposed multi-dimensional attention mechanism with convolutional neural networks (CNNs). Deep CNNs assist in capturing the synergistic effects among these fragment sets, enabling the extraction of relevant features of drugs and proteins. Meanwhile, the multi-dimensional attention mechanism refines the relationship between drug and protein features by assigning attention vectors to each drug compound and amino acid. This mechanism empowers the model to further concentrate on pivotal substructures and elements, thereby improving its ability to identify essential interactions in DPI prediction. We evaluated the performance of BCMMDA on four well-known benchmark datasets. The results indicated that BCMMDA outperformed state-of-the-art baseline models, demonstrating significant improvement in performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
爱笑晓曼发布了新的文献求助20
6秒前
老大蒂亚戈应助YJ888采纳,获得10
7秒前
JamesPei应助潇湘雪月采纳,获得10
7秒前
bbczj发布了新的文献求助10
9秒前
10秒前
11秒前
南风知我意完成签到,获得积分20
12秒前
段一帆发布了新的文献求助30
14秒前
wangqinlei完成签到 ,获得积分10
14秒前
fenghp发布了新的文献求助10
15秒前
王馨雨发布了新的文献求助10
15秒前
17秒前
CipherSage应助ccalvintan采纳,获得10
18秒前
18秒前
雪天的阳完成签到 ,获得积分10
20秒前
21秒前
22秒前
22秒前
烟花应助ren采纳,获得10
23秒前
讨厌科研发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
苏卿应助科研通管家采纳,获得30
25秒前
fd163c应助科研通管家采纳,获得10
26秒前
香蕉觅云应助科研通管家采纳,获得10
26秒前
思源应助科研通管家采纳,获得10
26秒前
SYLH应助科研通管家采纳,获得10
26秒前
26秒前
CAOHOU应助科研通管家采纳,获得10
26秒前
爆米花应助科研通管家采纳,获得10
26秒前
SYLH应助科研通管家采纳,获得30
26秒前
小蘑菇应助科研通管家采纳,获得10
26秒前
26秒前
殷勤的紫槐完成签到,获得积分10
26秒前
风轻青柠发布了新的文献求助10
27秒前
27秒前
机智冬灵完成签到,获得积分10
28秒前
29秒前
为小嗳打伞完成签到 ,获得积分10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174