Predicting Drug–Protein Interactions through Branch-Chain Mining and multi-dimensional attention network

计算机科学 药物发现 水准点(测量) 人工智能 药物重新定位 卷积神经网络 机制(生物学) 机器学习 深度学习 重新调整用途 蛋白质结构预测 药物开发 数据挖掘 药品 生物信息学 蛋白质结构 化学 医学 生态学 哲学 生物化学 大地测量学 认识论 精神科 生物 地理
作者
Zhuo Huang,Qiu Xiao,Tuo Xiong,Wanwan Shi,Yide Yang,Guanghui Li
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108127-108127
标识
DOI:10.1016/j.compbiomed.2024.108127
摘要

Identifying drug–protein interactions (DPIs) is crucial in drug discovery and repurposing. Computational methods for precise DPI identification can expedite development timelines and reduce expenses compared with conventional experimental methods. Lately, deep learning techniques have been employed for predicting DPIs, enhancing these processes. Nevertheless, the limitations observed in prior studies, where many extract features from complete drug and protein entities, overlooking the crucial theoretical foundation that pharmacological responses are often correlated with specific substructures, can lead to poor predictive performance. Furthermore, certain substructure-focused research confines its exploration to a solitary fragment category, such as a functional group. In this study, addressing these constraints, we present an end-to-end framework termed BCMMDA for predicting DPIs. The framework considers various substructure types, including branch chains, common substructures, and specific fragments. We designed a specific feature learning module by combining our proposed multi-dimensional attention mechanism with convolutional neural networks (CNNs). Deep CNNs assist in capturing the synergistic effects among these fragment sets, enabling the extraction of relevant features of drugs and proteins. Meanwhile, the multi-dimensional attention mechanism refines the relationship between drug and protein features by assigning attention vectors to each drug compound and amino acid. This mechanism empowers the model to further concentrate on pivotal substructures and elements, thereby improving its ability to identify essential interactions in DPI prediction. We evaluated the performance of BCMMDA on four well-known benchmark datasets. The results indicated that BCMMDA outperformed state-of-the-art baseline models, demonstrating significant improvement in performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助草莓屁屁采纳,获得10
1秒前
1秒前
1秒前
ste发布了新的文献求助10
1秒前
大气的谷梦完成签到,获得积分10
2秒前
carryxu完成签到,获得积分10
2秒前
3秒前
Whisper完成签到 ,获得积分10
3秒前
4秒前
Zoeforever发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
笨笨雪碧发布了新的文献求助10
8秒前
liyao90911发布了新的文献求助10
10秒前
11秒前
11秒前
冰柠橙夏发布了新的文献求助10
11秒前
ste完成签到,获得积分10
12秒前
shinysparrow应助一只橘子采纳,获得100
13秒前
14秒前
15秒前
jiajiajai完成签到,获得积分10
17秒前
特来骑发布了新的文献求助10
19秒前
科研通AI2S应助大气的谷梦采纳,获得10
19秒前
NINI发布了新的文献求助10
21秒前
22秒前
今后应助echo采纳,获得10
22秒前
情怀应助Shalin采纳,获得10
22秒前
bkagyin应助dddlrb采纳,获得10
23秒前
诗图应助文件撤销了驳回
24秒前
27秒前
开放舞蹈发布了新的文献求助10
28秒前
28秒前
方赫然应助大气的谷梦采纳,获得10
30秒前
勤恳的画笔完成签到 ,获得积分10
31秒前
风筝鱼完成签到 ,获得积分10
31秒前
32秒前
轻松的小海豚完成签到 ,获得积分10
32秒前
CQ发布了新的文献求助10
32秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 800
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3210528
求助须知:如何正确求助?哪些是违规求助? 2859742
关于积分的说明 8120900
捐赠科研通 2525235
什么是DOI,文献DOI怎么找? 1359166
科研通“疑难数据库(出版商)”最低求助积分说明 642956
邀请新用户注册赠送积分活动 614756