Predicting Drug–Protein Interactions through Branch-Chain Mining and multi-dimensional attention network

计算机科学 药物发现 水准点(测量) 人工智能 药物重新定位 卷积神经网络 机制(生物学) 机器学习 深度学习 重新调整用途 蛋白质结构预测 药物开发 数据挖掘 药品 生物信息学 蛋白质结构 化学 医学 生态学 哲学 生物化学 大地测量学 认识论 精神科 生物 地理
作者
Zhuo Huang,Qiu Xiao,Tuo Xiong,Wanwan Shi,Yide Yang,Guanghui Li
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108127-108127
标识
DOI:10.1016/j.compbiomed.2024.108127
摘要

Identifying drug–protein interactions (DPIs) is crucial in drug discovery and repurposing. Computational methods for precise DPI identification can expedite development timelines and reduce expenses compared with conventional experimental methods. Lately, deep learning techniques have been employed for predicting DPIs, enhancing these processes. Nevertheless, the limitations observed in prior studies, where many extract features from complete drug and protein entities, overlooking the crucial theoretical foundation that pharmacological responses are often correlated with specific substructures, can lead to poor predictive performance. Furthermore, certain substructure-focused research confines its exploration to a solitary fragment category, such as a functional group. In this study, addressing these constraints, we present an end-to-end framework termed BCMMDA for predicting DPIs. The framework considers various substructure types, including branch chains, common substructures, and specific fragments. We designed a specific feature learning module by combining our proposed multi-dimensional attention mechanism with convolutional neural networks (CNNs). Deep CNNs assist in capturing the synergistic effects among these fragment sets, enabling the extraction of relevant features of drugs and proteins. Meanwhile, the multi-dimensional attention mechanism refines the relationship between drug and protein features by assigning attention vectors to each drug compound and amino acid. This mechanism empowers the model to further concentrate on pivotal substructures and elements, thereby improving its ability to identify essential interactions in DPI prediction. We evaluated the performance of BCMMDA on four well-known benchmark datasets. The results indicated that BCMMDA outperformed state-of-the-art baseline models, demonstrating significant improvement in performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐人雄完成签到,获得积分10
刚刚
xctdyl1992完成签到,获得积分20
刚刚
刚刚
丰知然应助周凡淇采纳,获得10
刚刚
丰知然应助周凡淇采纳,获得10
刚刚
科研小白花完成签到,获得积分20
1秒前
纯真忆安完成签到,获得积分20
1秒前
1秒前
长孙归尘发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
sweetbearm应助通~采纳,获得10
2秒前
2秒前
青木蓝发布了新的文献求助10
3秒前
3秒前
3秒前
李健的粉丝团团长应助yzz采纳,获得10
3秒前
3秒前
3秒前
3秒前
呆萌士晋发布了新的文献求助10
3秒前
luxxxiu发布了新的文献求助10
3秒前
可爱的函函应助正直亦旋采纳,获得10
4秒前
铜豌豆完成签到 ,获得积分10
4秒前
爆米花应助鳗鱼灵寒采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
小庄完成签到,获得积分10
5秒前
Left完成签到,获得积分10
5秒前
勤恳的莺发布了新的文献求助10
6秒前
6秒前
wu完成签到,获得积分10
6秒前
潇洒的青发布了新的文献求助10
6秒前
云中渊完成签到,获得积分10
6秒前
好的发布了新的文献求助10
6秒前
Li猪猪发布了新的文献求助10
7秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794