Predicting Drug–Protein Interactions through Branch-Chain Mining and multi-dimensional attention network

计算机科学 药物发现 水准点(测量) 人工智能 药物重新定位 卷积神经网络 机制(生物学) 机器学习 深度学习 重新调整用途 蛋白质结构预测 药物开发 数据挖掘 药品 生物信息学 蛋白质结构 化学 医学 生物 认识论 精神科 生物化学 哲学 生态学 地理 大地测量学
作者
Zhuo Huang,Qiu Xiao,Tuo Xiong,Wanwan Shi,Yide Yang,Guanghui Li
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108127-108127
标识
DOI:10.1016/j.compbiomed.2024.108127
摘要

Identifying drug–protein interactions (DPIs) is crucial in drug discovery and repurposing. Computational methods for precise DPI identification can expedite development timelines and reduce expenses compared with conventional experimental methods. Lately, deep learning techniques have been employed for predicting DPIs, enhancing these processes. Nevertheless, the limitations observed in prior studies, where many extract features from complete drug and protein entities, overlooking the crucial theoretical foundation that pharmacological responses are often correlated with specific substructures, can lead to poor predictive performance. Furthermore, certain substructure-focused research confines its exploration to a solitary fragment category, such as a functional group. In this study, addressing these constraints, we present an end-to-end framework termed BCMMDA for predicting DPIs. The framework considers various substructure types, including branch chains, common substructures, and specific fragments. We designed a specific feature learning module by combining our proposed multi-dimensional attention mechanism with convolutional neural networks (CNNs). Deep CNNs assist in capturing the synergistic effects among these fragment sets, enabling the extraction of relevant features of drugs and proteins. Meanwhile, the multi-dimensional attention mechanism refines the relationship between drug and protein features by assigning attention vectors to each drug compound and amino acid. This mechanism empowers the model to further concentrate on pivotal substructures and elements, thereby improving its ability to identify essential interactions in DPI prediction. We evaluated the performance of BCMMDA on four well-known benchmark datasets. The results indicated that BCMMDA outperformed state-of-the-art baseline models, demonstrating significant improvement in performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xfy应助科研通管家采纳,获得10
刚刚
感动水杯完成签到 ,获得积分10
1秒前
1秒前
Rainlistener应助科研通管家采纳,获得10
1秒前
Rainlistener应助科研通管家采纳,获得10
1秒前
冷漠的布丁完成签到,获得积分10
1秒前
1秒前
搜集达人应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
重要的小丸子完成签到,获得积分10
2秒前
2秒前
李伟发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
明天又是美好的一天完成签到 ,获得积分10
3秒前
HAO发布了新的文献求助10
3秒前
4秒前
bobo完成签到,获得积分10
4秒前
茄子完成签到,获得积分10
5秒前
hyfwkd完成签到,获得积分10
5秒前
5秒前
顺利毕业发布了新的文献求助10
5秒前
BrandNew。发布了新的文献求助10
5秒前
7秒前
牛牛完成签到,获得积分10
7秒前
JMrider发布了新的文献求助10
7秒前
快乐真完成签到,获得积分10
7秒前
8秒前
D调的华丽完成签到,获得积分10
8秒前
XX发布了新的文献求助10
8秒前
成就凡双应助STP顶峰相见采纳,获得20
8秒前
9秒前
Cassiopiea19发布了新的文献求助10
9秒前
儒雅非笑发布了新的文献求助10
9秒前
9秒前
三寸光阴完成签到,获得积分10
10秒前
11秒前
知然完成签到,获得积分20
11秒前
somajason完成签到,获得积分10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698917
求助须知:如何正确求助?哪些是违规求助? 5127463
关于积分的说明 15223160
捐赠科研通 4853889
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555868
关于科研通互助平台的介绍 1514197