Identifying and Explaining Safety-critical Scenarios for Autonomous Vehicles via Key Features

计算机科学 更安全的 测试套件 考试(生物学) 场景测试 机器学习 测试用例 测试策略 临界面积 人工智能 软件 计算机安全 多样性(控制论) 工程类 生物 航空航天工程 古生物学 回归分析 程序设计语言
作者
Neelofar Neelofar,Aldeida Aleti
出处
期刊:ACM Transactions on Software Engineering and Methodology [Association for Computing Machinery]
卷期号:33 (4): 1-32 被引量:2
标识
DOI:10.1145/3640335
摘要

Ensuring the safety of autonomous vehicles (AVs) is of utmost importance, and testing them in simulated environments is a safer option than conducting in-field operational tests. However, generating an exhaustive test suite to identify critical test scenarios is computationally expensive, as the representation of each test is complex and contains various dynamic and static features, such as the AV under test, road participants (vehicles, pedestrians, and static obstacles), environmental factors (weather and light), and the road’s structural features (lanes, turns, road speed, etc.). In this article, we present a systematic technique that uses Instance Space Analysis (ISA) to identify the significant features of test scenarios that affect their ability to reveal the unsafe behaviour of AVs. ISA identifies the features that best differentiate safety-critical scenarios from normal driving and visualises the impact of these features on test scenario outcomes (safe/unsafe) in two dimensions. This visualisation helps to identify untested regions of the instance space and provides an indicator of the quality of the test suite in terms of the percentage of feature space covered by testing. To test the predictive ability of the identified features, we train five Machine Learning classifiers to classify test scenarios as safe or unsafe. The high precision, recall, and F1 scores indicate that our proposed approach is effective in predicting the outcome of a test scenario without executing it and can be used for test generation, selection, and prioritisation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我真的行完成签到,获得积分10
刚刚
橙子发布了新的文献求助10
刚刚
苹果诗筠完成签到 ,获得积分10
1秒前
Summer发布了新的文献求助10
2秒前
3秒前
啦啦啦啦完成签到,获得积分10
3秒前
4秒前
鲤鱼茗茗发布了新的文献求助10
4秒前
阡陌完成签到 ,获得积分10
4秒前
我真的行发布了新的文献求助10
5秒前
lxcy0612完成签到,获得积分10
5秒前
小太阳关注了科研通微信公众号
5秒前
5秒前
Bruce发布了新的文献求助10
6秒前
酷波er应助整齐的访梦采纳,获得10
6秒前
勾陈一发布了新的文献求助10
6秒前
7秒前
xingyuliu完成签到,获得积分10
8秒前
8秒前
pluto应助YORLAN采纳,获得10
9秒前
石沐沐完成签到,获得积分10
10秒前
ABCD__完成签到,获得积分10
10秒前
11秒前
11秒前
CodeCraft应助dfdvv采纳,获得10
11秒前
Hello应助zyz924采纳,获得10
11秒前
科研通AI5应助大胆的伟泽采纳,获得10
12秒前
卷卷516发布了新的文献求助10
13秒前
李健的小迷弟应助Bruce采纳,获得10
13秒前
JamesPei应助谷捣猫宁采纳,获得10
14秒前
14秒前
共享精神应助sunyawen采纳,获得10
14秒前
hehe0086完成签到,获得积分10
14秒前
Tom发布了新的文献求助10
14秒前
所所应助我真的行采纳,获得10
14秒前
范思烟完成签到,获得积分10
15秒前
坚定新瑶完成签到,获得积分10
16秒前
是小月耶完成签到,获得积分10
17秒前
烟花应助飞快的不尤采纳,获得10
17秒前
19秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476842
求助须知:如何正确求助?哪些是违规求助? 3068424
关于积分的说明 9107761
捐赠科研通 2759834
什么是DOI,文献DOI怎么找? 1514308
邀请新用户注册赠送积分活动 700220
科研通“疑难数据库(出版商)”最低求助积分说明 699399