A high-resolution map of soil organic carbon in cropland of Southern China

土壤碳 环境科学 数字土壤制图 可预测性 土壤科学 自举(财务) 协变量 固碳 土壤图 氮气 土壤水分 数学 统计 计量经济学 物理 量子力学
作者
Bifeng Hu,Modian Xie,Yue Zhou,Songchao Chen,Yin Zhou,Hanjie Ni,Jie Peng,Wenjun Ji,Yongsheng Hong,Hongyi Li,Zhou Shi
出处
期刊:Catena [Elsevier]
卷期号:237: 107813-107813 被引量:48
标识
DOI:10.1016/j.catena.2024.107813
摘要

An accurate and fine map of soil organic carbon (SOC) plays a vital role in understanding the global carbon cycle and achieving soil carbon sequestration potential. Although global and national maps of SOC are already available with various spatial resolutions, limited sample size, and relative coarse resolution hinder its accuracy and application in local regions. Here, we collected 13,424 soil samples and information of 45 environmental covariates from cropland in Jiangxi Province, Southern China during 2012 and 2013. Then, the optimal covariates were selected by a recursive feature elimination algorithm for mapping SOC. After that, we deployed the random forest (RF) to produce a fine map (30 m) of SOC in the cropland of Jiangxi Province and 100 times bootstrapping was performed to calculate the prediction uncertainty. Finally, we determined the impacts of various covariates on SOC variability using RF and partial least squares structural equation modeling. Our results showed that compared with the predictive model without soil management information, introducing soil management information improved the predictability of SOC with an increase in R2 by 7.35 % (0.73 vs 0.68) and decrease in RMSE by 7.03 % (2.91 vs 3.13 g kg−1). Our results well estimated the uncertainty of the predicted result with a PICP of 0.91 for a 90 % prediction interval. Soil properties and soil management activities make the largest contribution for modelling SOC. Specifically, the total nitrogen content, straw return amount, total potassium content, and multi-resolution valley bottom flatness were found as the most important factors for mapping SOC in the cropland of our study area. Overall, this study deepened our knowledge of the variation of SOC and also emphasizes that incorporating soil management information could help us to achieve more accurate predictions of SOC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
害羞的妙梦完成签到,获得积分10
刚刚
刚刚
难过怀绿完成签到,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
可积完成签到,获得积分10
4秒前
ShengjuChen完成签到 ,获得积分10
4秒前
tony发布了新的文献求助10
5秒前
健康的人生完成签到,获得积分10
5秒前
严yee发布了新的文献求助10
5秒前
6秒前
飞飞飞发布了新的文献求助10
6秒前
6秒前
刘科研完成签到,获得积分10
6秒前
kosmos完成签到,获得积分10
7秒前
7秒前
Khaos_0929完成签到,获得积分10
8秒前
9秒前
zhangmeimei完成签到,获得积分10
9秒前
化学镁铝完成签到,获得积分10
10秒前
11秒前
yyyyyy完成签到 ,获得积分10
12秒前
Satan发布了新的文献求助10
12秒前
13秒前
科研通AI6.1应助tony采纳,获得10
13秒前
怜梦完成签到,获得积分10
13秒前
cookie完成签到,获得积分10
14秒前
conveyor6发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
爆米花应助科研通管家采纳,获得10
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得30
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得30
16秒前
Rollei应助科研通管家采纳,获得10
16秒前
Rollei应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734559
求助须知:如何正确求助?哪些是违规求助? 5354867
关于积分的说明 15327244
捐赠科研通 4879200
什么是DOI,文献DOI怎么找? 2621736
邀请新用户注册赠送积分活动 1570891
关于科研通互助平台的介绍 1527707