A high-resolution map of soil organic carbon in cropland of Southern China

土壤碳 环境科学 数字土壤制图 可预测性 土壤科学 自举(财务) 协变量 固碳 土壤图 氮气 土壤水分 数学 统计 计量经济学 物理 量子力学
作者
Bifeng Hu,Modian Xie,Yue Zhou,Songchao Chen,Yin Zhou,Hanjie Ni,Jie Peng,Wenjun Ji,Yongsheng Hong,Hongyi Li,Zhou Shi
出处
期刊:Catena [Elsevier]
卷期号:237: 107813-107813 被引量:10
标识
DOI:10.1016/j.catena.2024.107813
摘要

An accurate and fine map of soil organic carbon (SOC) plays a vital role in understanding the global carbon cycle and achieving soil carbon sequestration potential. Although global and national maps of SOC are already available with various spatial resolutions, limited sample size, and relative coarse resolution hinder its accuracy and application in local regions. Here, we collected 13,424 soil samples and information of 45 environmental covariates from cropland in Jiangxi Province, Southern China during 2012 and 2013. Then, the optimal covariates were selected by a recursive feature elimination algorithm for mapping SOC. After that, we deployed the random forest (RF) to produce a fine map (30 m) of SOC in the cropland of Jiangxi Province and 100 times bootstrapping was performed to calculate the prediction uncertainty. Finally, we determined the impacts of various covariates on SOC variability using RF and partial least squares structural equation modeling. Our results showed that compared with the predictive model without soil management information, introducing soil management information improved the predictability of SOC with an increase in R2 by 7.35 % (0.73 vs 0.68) and decrease in RMSE by 7.03 % (2.91 vs 3.13 g kg−1). Our results well estimated the uncertainty of the predicted result with a PICP of 0.91 for a 90 % prediction interval. Soil properties and soil management activities make the largest contribution for modelling SOC. Specifically, the total nitrogen content, straw return amount, total potassium content, and multi-resolution valley bottom flatness were found as the most important factors for mapping SOC in the cropland of our study area. Overall, this study deepened our knowledge of the variation of SOC and also emphasizes that incorporating soil management information could help us to achieve more accurate predictions of SOC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Millie发布了新的文献求助10
1秒前
duxinyue应助sunzhiyu233采纳,获得10
1秒前
2秒前
喜悦夏之发布了新的文献求助10
3秒前
Chloe完成签到,获得积分10
3秒前
Kite完成签到,获得积分10
3秒前
JamesPei应助ZH的天方夜谭采纳,获得10
3秒前
晓峰完成签到,获得积分10
4秒前
xiao完成签到 ,获得积分10
4秒前
4秒前
6秒前
Ayu完成签到,获得积分10
6秒前
yale发布了新的文献求助10
6秒前
6秒前
Driscoll完成签到 ,获得积分10
8秒前
喜悦夏之完成签到,获得积分10
8秒前
8秒前
yatou5651发布了新的文献求助10
8秒前
10秒前
汉关发布了新的文献求助10
11秒前
¥¥¥¥¥¥¥¥完成签到 ,获得积分10
11秒前
XXF发布了新的文献求助10
11秒前
zrz发布了新的文献求助10
12秒前
12秒前
12秒前
田様应助BaekHyun采纳,获得10
14秒前
peng发布了新的文献求助10
14秒前
14秒前
15秒前
科研通AI5应助孔小白采纳,获得10
16秒前
16秒前
舒适逊完成签到 ,获得积分10
16秒前
科研通AI5应助11111采纳,获得10
17秒前
CipherSage应助hxn采纳,获得10
17秒前
19秒前
深情安青应助shatang采纳,获得10
19秒前
zxx5012发布了新的文献求助10
19秒前
芥丶子完成签到,获得积分10
20秒前
曾开心完成签到,获得积分10
20秒前
平淡南霜发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808