A deep-learning-based tree species classification for natural secondary forests using unmanned aerial vehicle hyperspectral images and LiDAR

高光谱成像 遥感 激光雷达 天然林 环境科学 树(集合论) 航测 航空影像 地理 农林复合经营 数学分析 数学
作者
Ye Ma,Yuting Zhao,Jungho Im,Yinghui Zhao,Zhen Zhen
出处
期刊:Ecological Indicators [Elsevier BV]
卷期号:159: 111608-111608 被引量:19
标识
DOI:10.1016/j.ecolind.2024.111608
摘要

Accurate tree species classification is essential for forest resource management and biodiversity assessment. However, classifying tree species becomes challenging in natural secondary forests due to the difficulties in outlining the tree crown boundary. In this study, an object-based framework for tree species classification in the Experimental Forestry Farm of Northeast Forestry University, located in Heilongjiang Province, China, was developed based on unmanned aerial vehicle (UAV) hyperspectral images (HSIs) and UAV light detection and ranging (LiDAR) data using convolutional neural networks (CNNs). The study area was characterized by representative natural secondary forests that encompass diverse tree species, such as Korean pine (Pinus koraiensis Sieb. et Zucc.), White birch (Betula platyphylla Suk.), Siberian elm (Ulmus pumila L.), and Manchurian ash (Fraxinus mandshurica Rupr.). This study included two key processes: (1) the u-shaped network (U-net) algorithm was employed with the simple linear iterative clustering (SLIC) algorithm, that is, the U-SLIC algorithm, for individual tree crown delineation (ITCD), and (2) the performances of one-dimensional CNN (1D-CNN), two-dimensional CNN (2D-CNN), and three-dimensional CNN (3D-CNN) models for tree species classification were compared while investigating the role of an attention mechanism (convolutional block attention module, CBAM) added to CNN models (1D-/2D-/3D-CNN + CBAM). The results showed that the U-SLIC algorithm obtained a satisfactory accuracy for the ITCD procedure, with a recall of 0.92, precision of 0.79, and F-score of 0.85. The feature selection effectively enhanced the CNN models' performances for tree species classification. Furthermore, adding the CBAM resulted in overall accuracy (OA) improvements of 0.08, 0.11, and 0.09 for the 1D-CNN, 2D-CNN, and 3D-CNN, respectively. The 1D-CNN + CBAM model performed best with an OA of 0.83 when utilizing the selected HSI and LiDAR features. This framework highlighted the utilization and integration of multiple deep-learning algorithms in complex natural forests, serving as prerequisites for forest management decisions, biodiversity conservation, and carbon stock estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小柒完成签到 ,获得积分10
刚刚
聪慧芷巧发布了新的文献求助10
1秒前
2秒前
6秒前
蓝意完成签到,获得积分0
7秒前
xiaohongmao完成签到,获得积分10
12秒前
15秒前
qweerrtt完成签到,获得积分10
22秒前
22秒前
与共发布了新的文献求助10
23秒前
carly完成签到 ,获得积分10
24秒前
颢懿完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
30秒前
ljc完成签到 ,获得积分10
31秒前
Java完成签到,获得积分10
35秒前
37秒前
鲤鱼安青完成签到 ,获得积分10
39秒前
39秒前
dollarpuff完成签到 ,获得积分10
42秒前
42秒前
mmmmmMM完成签到,获得积分10
49秒前
luckweb完成签到,获得积分10
55秒前
猫的毛完成签到 ,获得积分10
56秒前
nicky完成签到 ,获得积分10
57秒前
麦子完成签到 ,获得积分10
58秒前
58秒前
Wilson完成签到 ,获得积分10
59秒前
luckweb发布了新的文献求助10
59秒前
59秒前
1分钟前
1分钟前
传奇3应助wujiwuhui采纳,获得10
1分钟前
开心寄松完成签到,获得积分10
1分钟前
北宫完成签到 ,获得积分10
1分钟前
wansida完成签到,获得积分10
1分钟前
QXS完成签到 ,获得积分10
1分钟前
1分钟前
菠萝完成签到 ,获得积分10
1分钟前
领导范儿应助Villanellel采纳,获得10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022