清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A deep-learning-based tree species classification for natural secondary forests using unmanned aerial vehicle hyperspectral images and LiDAR

高光谱成像 遥感 激光雷达 天然林 环境科学 树(集合论) 航测 航空影像 地理 农林复合经营 数学分析 数学
作者
Ye Ma,Yuting Zhao,Jungho Im,Yinghui Zhao,Zhen Zhen
出处
期刊:Ecological Indicators [Elsevier BV]
卷期号:159: 111608-111608 被引量:19
标识
DOI:10.1016/j.ecolind.2024.111608
摘要

Accurate tree species classification is essential for forest resource management and biodiversity assessment. However, classifying tree species becomes challenging in natural secondary forests due to the difficulties in outlining the tree crown boundary. In this study, an object-based framework for tree species classification in the Experimental Forestry Farm of Northeast Forestry University, located in Heilongjiang Province, China, was developed based on unmanned aerial vehicle (UAV) hyperspectral images (HSIs) and UAV light detection and ranging (LiDAR) data using convolutional neural networks (CNNs). The study area was characterized by representative natural secondary forests that encompass diverse tree species, such as Korean pine (Pinus koraiensis Sieb. et Zucc.), White birch (Betula platyphylla Suk.), Siberian elm (Ulmus pumila L.), and Manchurian ash (Fraxinus mandshurica Rupr.). This study included two key processes: (1) the u-shaped network (U-net) algorithm was employed with the simple linear iterative clustering (SLIC) algorithm, that is, the U-SLIC algorithm, for individual tree crown delineation (ITCD), and (2) the performances of one-dimensional CNN (1D-CNN), two-dimensional CNN (2D-CNN), and three-dimensional CNN (3D-CNN) models for tree species classification were compared while investigating the role of an attention mechanism (convolutional block attention module, CBAM) added to CNN models (1D-/2D-/3D-CNN + CBAM). The results showed that the U-SLIC algorithm obtained a satisfactory accuracy for the ITCD procedure, with a recall of 0.92, precision of 0.79, and F-score of 0.85. The feature selection effectively enhanced the CNN models' performances for tree species classification. Furthermore, adding the CBAM resulted in overall accuracy (OA) improvements of 0.08, 0.11, and 0.09 for the 1D-CNN, 2D-CNN, and 3D-CNN, respectively. The 1D-CNN + CBAM model performed best with an OA of 0.83 when utilizing the selected HSI and LiDAR features. This framework highlighted the utilization and integration of multiple deep-learning algorithms in complex natural forests, serving as prerequisites for forest management decisions, biodiversity conservation, and carbon stock estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaofeixia完成签到 ,获得积分10
33秒前
ys完成签到 ,获得积分10
51秒前
grace完成签到,获得积分10
55秒前
ll完成签到,获得积分20
1分钟前
852应助ll采纳,获得10
1分钟前
mojito完成签到 ,获得积分10
1分钟前
muriel完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
奥利奥利奥完成签到 ,获得积分10
2分钟前
2分钟前
Dave发布了新的文献求助10
2分钟前
DouBo完成签到,获得积分10
2分钟前
Richardisme完成签到 ,获得积分10
2分钟前
qianchang完成签到,获得积分10
3分钟前
yuiop完成签到,获得积分10
3分钟前
liuyc完成签到 ,获得积分10
3分钟前
3分钟前
ll发布了新的文献求助10
3分钟前
糖果苏扬完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
zhang完成签到 ,获得积分10
3分钟前
蝴蝶完成签到 ,获得积分10
4分钟前
naczx完成签到,获得积分0
4分钟前
Dave发布了新的文献求助10
4分钟前
FashionBoy应助Dave采纳,获得10
5分钟前
yi完成签到,获得积分10
5分钟前
陈龙完成签到,获得积分10
5分钟前
rockyshi完成签到 ,获得积分10
6分钟前
刘刘完成签到 ,获得积分10
6分钟前
6分钟前
Dave发布了新的文献求助10
6分钟前
HCT完成签到,获得积分10
7分钟前
小象完成签到,获得积分10
7分钟前
7分钟前
在水一方应助Dave采纳,获得10
7分钟前
淡淡兔子完成签到 ,获得积分10
7分钟前
8分钟前
Dave发布了新的文献求助10
8分钟前
慕青应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990502
求助须知:如何正确求助?哪些是违规求助? 3532220
关于积分的说明 11256532
捐赠科研通 3271046
什么是DOI,文献DOI怎么找? 1805207
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234