已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A deep-learning-based tree species classification for natural secondary forests using unmanned aerial vehicle hyperspectral images and LiDAR

高光谱成像 遥感 激光雷达 天然林 环境科学 树(集合论) 航测 航空影像 地理 农林复合经营 数学分析 数学
作者
Ye Ma,Yuting Zhao,Jungho Im,Yinghui Zhao,Zhen Zhen
出处
期刊:Ecological Indicators [Elsevier]
卷期号:159: 111608-111608 被引量:2
标识
DOI:10.1016/j.ecolind.2024.111608
摘要

Accurate tree species classification is essential for forest resource management and biodiversity assessment. However, classifying tree species becomes challenging in natural secondary forests due to the difficulties in outlining the tree crown boundary. In this study, an object-based framework for tree species classification in the Experimental Forestry Farm of Northeast Forestry University, located in Heilongjiang Province, China, was developed based on unmanned aerial vehicle (UAV) hyperspectral images (HSIs) and UAV light detection and ranging (LiDAR) data using convolutional neural networks (CNNs). The study area was characterized by representative natural secondary forests that encompass diverse tree species, such as Korean pine (Pinus koraiensis Sieb. et Zucc.), White birch (Betula platyphylla Suk.), Siberian elm (Ulmus pumila L.), and Manchurian ash (Fraxinus mandshurica Rupr.). This study included two key processes: (1) the u-shaped network (U-net) algorithm was employed with the simple linear iterative clustering (SLIC) algorithm, that is, the U-SLIC algorithm, for individual tree crown delineation (ITCD), and (2) the performances of one-dimensional CNN (1D-CNN), two-dimensional CNN (2D-CNN), and three-dimensional CNN (3D-CNN) models for tree species classification were compared while investigating the role of an attention mechanism (convolutional block attention module, CBAM) added to CNN models (1D-/2D-/3D-CNN + CBAM). The results showed that the U-SLIC algorithm obtained a satisfactory accuracy for the ITCD procedure, with a recall of 0.92, precision of 0.79, and F-score of 0.85. The feature selection effectively enhanced the CNN models' performances for tree species classification. Furthermore, adding the CBAM resulted in overall accuracy (OA) improvements of 0.08, 0.11, and 0.09 for the 1D-CNN, 2D-CNN, and 3D-CNN, respectively. The 1D-CNN + CBAM model performed best with an OA of 0.83 when utilizing the selected HSI and LiDAR features. This framework highlighted the utilization and integration of multiple deep-learning algorithms in complex natural forests, serving as prerequisites for forest management decisions, biodiversity conservation, and carbon stock estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bukeshuo发布了新的文献求助10
2秒前
Nakjeong完成签到 ,获得积分10
3秒前
qianchang完成签到,获得积分10
5秒前
Kevin完成签到 ,获得积分10
7秒前
风趣半莲完成签到,获得积分10
8秒前
本尼脸上褶子完成签到 ,获得积分10
8秒前
cc完成签到 ,获得积分10
9秒前
9秒前
JacobWang完成签到,获得积分10
10秒前
风趣半莲发布了新的文献求助10
12秒前
13秒前
科研通AI2S应助Gary采纳,获得10
17秒前
18秒前
LMH发布了新的文献求助10
19秒前
慕青应助科研通管家采纳,获得10
21秒前
英俊的铭应助狂野晓蕾采纳,获得10
23秒前
骆十八完成签到,获得积分10
25秒前
28秒前
jasonjiang完成签到 ,获得积分10
29秒前
顾矜应助strelias采纳,获得10
31秒前
狂野晓蕾发布了新的文献求助10
35秒前
狂野晓蕾完成签到,获得积分10
42秒前
44秒前
46秒前
47秒前
LLQ发布了新的文献求助10
49秒前
七十二莳发布了新的文献求助10
51秒前
deswin完成签到 ,获得积分10
52秒前
潮人完成签到 ,获得积分10
1分钟前
深情安青应助eurhfe采纳,获得10
1分钟前
1分钟前
起风了完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
舒适怀寒完成签到 ,获得积分10
1分钟前
ss25发布了新的文献求助10
1分钟前
1分钟前
jxp发布了新的文献求助10
1分钟前
淡定归尘完成签到,获得积分0
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146673
求助须知:如何正确求助?哪些是违规求助? 2797981
关于积分的说明 7826310
捐赠科研通 2454478
什么是DOI,文献DOI怎么找? 1306289
科研通“疑难数据库(出版商)”最低求助积分说明 627692
版权声明 601522