亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deep-learning-based tree species classification for natural secondary forests using unmanned aerial vehicle hyperspectral images and LiDAR

高光谱成像 遥感 激光雷达 天然林 环境科学 树(集合论) 航测 航空影像 地理 农林复合经营 数学分析 数学
作者
Ye Ma,Yuting Zhao,Jungho Im,Yinghui Zhao,Zhen Zhen
出处
期刊:Ecological Indicators [Elsevier BV]
卷期号:159: 111608-111608 被引量:19
标识
DOI:10.1016/j.ecolind.2024.111608
摘要

Accurate tree species classification is essential for forest resource management and biodiversity assessment. However, classifying tree species becomes challenging in natural secondary forests due to the difficulties in outlining the tree crown boundary. In this study, an object-based framework for tree species classification in the Experimental Forestry Farm of Northeast Forestry University, located in Heilongjiang Province, China, was developed based on unmanned aerial vehicle (UAV) hyperspectral images (HSIs) and UAV light detection and ranging (LiDAR) data using convolutional neural networks (CNNs). The study area was characterized by representative natural secondary forests that encompass diverse tree species, such as Korean pine (Pinus koraiensis Sieb. et Zucc.), White birch (Betula platyphylla Suk.), Siberian elm (Ulmus pumila L.), and Manchurian ash (Fraxinus mandshurica Rupr.). This study included two key processes: (1) the u-shaped network (U-net) algorithm was employed with the simple linear iterative clustering (SLIC) algorithm, that is, the U-SLIC algorithm, for individual tree crown delineation (ITCD), and (2) the performances of one-dimensional CNN (1D-CNN), two-dimensional CNN (2D-CNN), and three-dimensional CNN (3D-CNN) models for tree species classification were compared while investigating the role of an attention mechanism (convolutional block attention module, CBAM) added to CNN models (1D-/2D-/3D-CNN + CBAM). The results showed that the U-SLIC algorithm obtained a satisfactory accuracy for the ITCD procedure, with a recall of 0.92, precision of 0.79, and F-score of 0.85. The feature selection effectively enhanced the CNN models' performances for tree species classification. Furthermore, adding the CBAM resulted in overall accuracy (OA) improvements of 0.08, 0.11, and 0.09 for the 1D-CNN, 2D-CNN, and 3D-CNN, respectively. The 1D-CNN + CBAM model performed best with an OA of 0.83 when utilizing the selected HSI and LiDAR features. This framework highlighted the utilization and integration of multiple deep-learning algorithms in complex natural forests, serving as prerequisites for forest management decisions, biodiversity conservation, and carbon stock estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Microbiota完成签到,获得积分10
21秒前
会飞的流氓兔完成签到 ,获得积分10
21秒前
31秒前
DL完成签到,获得积分10
33秒前
DL发布了新的文献求助10
38秒前
小马甲应助科研通管家采纳,获得10
48秒前
MchemG应助科研通管家采纳,获得100
48秒前
大模型应助科研通管家采纳,获得10
48秒前
李健的小迷弟应助xiongdi521采纳,获得10
49秒前
50秒前
闫雪发布了新的文献求助10
54秒前
1分钟前
橙子味的邱憨憨完成签到 ,获得积分10
1分钟前
xiongdi521发布了新的文献求助10
1分钟前
隐形曼青应助闫雪采纳,获得10
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Xw发布了新的文献求助10
1分钟前
Plum22发布了新的文献求助10
1分钟前
2分钟前
啊哦额发布了新的文献求助10
2分钟前
2分钟前
qq发布了新的文献求助10
2分钟前
Akitten完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
GingerF应助科研通管家采纳,获得10
2分钟前
GingerF应助科研通管家采纳,获得20
2分钟前
GingerF应助科研通管家采纳,获得10
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得30
2分钟前
大胆梦容关注了科研通微信公众号
2分钟前
Xw关闭了Xw文献求助
2分钟前
Plum22驳回了Lucas应助
3分钟前
李健的粉丝团团长应助kohu采纳,获得10
3分钟前
qq完成签到,获得积分10
3分钟前
思源应助Akitten采纳,获得30
3分钟前
3分钟前
3分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990105
求助须知:如何正确求助?哪些是违规求助? 3532119
关于积分的说明 11256456
捐赠科研通 3271016
什么是DOI,文献DOI怎么找? 1805171
邀请新用户注册赠送积分活动 882288
科研通“疑难数据库(出版商)”最低求助积分说明 809228