亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deep-learning-based tree species classification for natural secondary forests using unmanned aerial vehicle hyperspectral images and LiDAR

高光谱成像 遥感 激光雷达 天然林 环境科学 树(集合论) 航测 航空影像 地理 农林复合经营 数学分析 数学
作者
Ye Ma,Yuting Zhao,Jungho Im,Yinghui Zhao,Zhen Zhen
出处
期刊:Ecological Indicators [Elsevier]
卷期号:159: 111608-111608 被引量:19
标识
DOI:10.1016/j.ecolind.2024.111608
摘要

Accurate tree species classification is essential for forest resource management and biodiversity assessment. However, classifying tree species becomes challenging in natural secondary forests due to the difficulties in outlining the tree crown boundary. In this study, an object-based framework for tree species classification in the Experimental Forestry Farm of Northeast Forestry University, located in Heilongjiang Province, China, was developed based on unmanned aerial vehicle (UAV) hyperspectral images (HSIs) and UAV light detection and ranging (LiDAR) data using convolutional neural networks (CNNs). The study area was characterized by representative natural secondary forests that encompass diverse tree species, such as Korean pine (Pinus koraiensis Sieb. et Zucc.), White birch (Betula platyphylla Suk.), Siberian elm (Ulmus pumila L.), and Manchurian ash (Fraxinus mandshurica Rupr.). This study included two key processes: (1) the u-shaped network (U-net) algorithm was employed with the simple linear iterative clustering (SLIC) algorithm, that is, the U-SLIC algorithm, for individual tree crown delineation (ITCD), and (2) the performances of one-dimensional CNN (1D-CNN), two-dimensional CNN (2D-CNN), and three-dimensional CNN (3D-CNN) models for tree species classification were compared while investigating the role of an attention mechanism (convolutional block attention module, CBAM) added to CNN models (1D-/2D-/3D-CNN + CBAM). The results showed that the U-SLIC algorithm obtained a satisfactory accuracy for the ITCD procedure, with a recall of 0.92, precision of 0.79, and F-score of 0.85. The feature selection effectively enhanced the CNN models' performances for tree species classification. Furthermore, adding the CBAM resulted in overall accuracy (OA) improvements of 0.08, 0.11, and 0.09 for the 1D-CNN, 2D-CNN, and 3D-CNN, respectively. The 1D-CNN + CBAM model performed best with an OA of 0.83 when utilizing the selected HSI and LiDAR features. This framework highlighted the utilization and integration of multiple deep-learning algorithms in complex natural forests, serving as prerequisites for forest management decisions, biodiversity conservation, and carbon stock estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
龚文亮完成签到,获得积分10
9秒前
9秒前
13秒前
28秒前
zack发布了新的文献求助10
33秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
慕青应助科研通管家采纳,获得10
46秒前
浮游应助科研通管家采纳,获得10
46秒前
浮游应助科研通管家采纳,获得10
46秒前
量子星尘发布了新的文献求助10
56秒前
CipherSage应助活力桃采纳,获得10
1分钟前
memory完成签到,获得积分10
1分钟前
1分钟前
1分钟前
桃桃星冰乐完成签到,获得积分10
2分钟前
科研通AI6应助平常的建辉采纳,获得10
2分钟前
胖小羊完成签到 ,获得积分10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
2分钟前
追梦人完成签到 ,获得积分10
3分钟前
3分钟前
活力桃发布了新的文献求助10
3分钟前
3分钟前
3分钟前
lkz发布了新的文献求助10
3分钟前
lkz完成签到,获得积分20
3分钟前
3分钟前
活力桃完成签到,获得积分10
4分钟前
4分钟前
lovelife完成签到,获得积分10
4分钟前
平常的建辉完成签到,获得积分10
4分钟前
嘟嘟完成签到 ,获得积分10
4分钟前
qqJing完成签到,获得积分10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
汉堡包应助qqJing采纳,获得20
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426598
求助须知:如何正确求助?哪些是违规求助? 4540326
关于积分的说明 14171947
捐赠科研通 4458090
什么是DOI,文献DOI怎么找? 2444828
邀请新用户注册赠送积分活动 1435872
关于科研通互助平台的介绍 1413336