Prediction of Pure Mineral-H2-Brine Wettability Using Data-Driven Machine Learning Modeling: Implications for H2 Geo-Storage

卤水 润湿 计算机科学 矿物 材料科学 人工智能 机器学习 化学 冶金 复合材料 有机化学
作者
Muhammad Ali,Zeeshan Tariq,Muhammad Mubashir,Muhammad Shahzad Kamal,Bicheng Yan,Hussein Hoteit
标识
DOI:10.2523/iptc-23969-ms
摘要

Abstract Greenhouse gases, particularly carbon dioxide (CO2), have the effect of raising the Earth's temperature. To combat this issue and reduce carbon emissions, it is advisable to shift towards the widespread utilization of cleaner fuels, such as hydrogen. The establishment of a global-scale hydrogen economy, coupled with hydrogen geological storage, presents a viable solution to meet the world's energy demands while accommodating peak usage periods. In geological hydrogen (H2) storage, the rock formation wetting characteristics are essential to regulate fluid dynamics, injection rates, the spread of gas within the rock matrix, and safety considerations. The wetting characteristics of minerals within the rock are significantly influenced by geological factors. To assess the wetting behavior of a mineral/H2/brine system under geo-storage conditions, innovative approaches have emerged. This research utilized a combination of advanced machine learning models, such as fully connected neural networks, adaptive gradient boosting, random forests, decision trees, and extreme gradient boosting to forecast the wettability characteristics of a ternary system comprising hydrogen (H2), brine, and specific rock minerals (namely quartz and mica). The predictions were made under various conditions, including different pressures ranging from 0 to 25 MPa, temperatures spanning from 308 to 343 K, and salinities of 10 wt.% NaCl solution. The machine learning models demonstrated remarkable accuracy in predicting mineral/H2/brine system's wettability (contact angles, advancing and receding). Incorporation of various experimental values have established correlations based on ML techniques. The performance and reliability of these models were rigorously assessed using statistical methods and graphical analyses. The deployed ML models consistently provided accurate predictions of wettability across diverse operational scenarios. Notably, the suggested model exhibited a root mean square error (RMSE) of 0.214 during training and 0.810 during testing. Furthermore, sensitivity analysis revealed that pressure exerted the most significant influence on mineral/H2/brine system's wettability. These ML model outcomes can be effectively utilized to anticipate hydrogen geological storage capacities and ensure the security of restraint in large-scale developments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助东京芝士123采纳,获得10
刚刚
bioliuqing发布了新的文献求助20
1秒前
MQ完成签到,获得积分10
1秒前
Bio应助风清扬采纳,获得50
1秒前
1秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
上官若男应助魔幻的曼寒采纳,获得10
4秒前
pra完成签到,获得积分20
5秒前
5秒前
一顿三大碗完成签到,获得积分10
5秒前
6秒前
邵大炮发布了新的文献求助10
6秒前
8秒前
李可汗发布了新的文献求助10
8秒前
柏林寒冬完成签到,获得积分10
8秒前
成就小懒虫完成签到,获得积分10
8秒前
9秒前
goodbuhui完成签到,获得积分10
10秒前
无所谓完成签到,获得积分10
10秒前
dan发布了新的文献求助10
12秒前
1548081774完成签到,获得积分10
13秒前
Noah发布了新的文献求助10
13秒前
Akim应助哇咔咔采纳,获得10
14秒前
14秒前
Sj泽完成签到,获得积分10
14秒前
15秒前
15秒前
17秒前
可爱大炮发布了新的文献求助10
19秒前
Xzx1995发布了新的文献求助10
19秒前
思源应助忧虑的代容采纳,获得30
19秒前
dan完成签到,获得积分10
20秒前
20秒前
筱甜发布了新的文献求助10
20秒前
20秒前
研友_VZG7GZ应助mSnBmaterial采纳,获得10
20秒前
所所应助朝暮星河采纳,获得10
21秒前
我是老大应助李晓灿采纳,获得10
22秒前
奔流的河发布了新的文献求助10
23秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4023566
求助须知:如何正确求助?哪些是违规求助? 3563544
关于积分的说明 11343185
捐赠科研通 3294981
什么是DOI,文献DOI怎么找? 1814896
邀请新用户注册赠送积分活动 889576
科研通“疑难数据库(出版商)”最低求助积分说明 813019