Prediction of Pure Mineral-H2-Brine Wettability Using Data-Driven Machine Learning Modeling: Implications for H2 Geo-Storage

卤水 润湿 计算机科学 矿物 材料科学 人工智能 机器学习 化学 冶金 复合材料 有机化学
作者
Muhammad Ali,Zeeshan Tariq,Muhammad Mubashir,Muhammad Shahzad Kamal,Bicheng Yan,Hussein Hoteit
标识
DOI:10.2523/iptc-23969-ms
摘要

Abstract Greenhouse gases, particularly carbon dioxide (CO2), have the effect of raising the Earth's temperature. To combat this issue and reduce carbon emissions, it is advisable to shift towards the widespread utilization of cleaner fuels, such as hydrogen. The establishment of a global-scale hydrogen economy, coupled with hydrogen geological storage, presents a viable solution to meet the world's energy demands while accommodating peak usage periods. In geological hydrogen (H2) storage, the rock formation wetting characteristics are essential to regulate fluid dynamics, injection rates, the spread of gas within the rock matrix, and safety considerations. The wetting characteristics of minerals within the rock are significantly influenced by geological factors. To assess the wetting behavior of a mineral/H2/brine system under geo-storage conditions, innovative approaches have emerged. This research utilized a combination of advanced machine learning models, such as fully connected neural networks, adaptive gradient boosting, random forests, decision trees, and extreme gradient boosting to forecast the wettability characteristics of a ternary system comprising hydrogen (H2), brine, and specific rock minerals (namely quartz and mica). The predictions were made under various conditions, including different pressures ranging from 0 to 25 MPa, temperatures spanning from 308 to 343 K, and salinities of 10 wt.% NaCl solution. The machine learning models demonstrated remarkable accuracy in predicting mineral/H2/brine system's wettability (contact angles, advancing and receding). Incorporation of various experimental values have established correlations based on ML techniques. The performance and reliability of these models were rigorously assessed using statistical methods and graphical analyses. The deployed ML models consistently provided accurate predictions of wettability across diverse operational scenarios. Notably, the suggested model exhibited a root mean square error (RMSE) of 0.214 during training and 0.810 during testing. Furthermore, sensitivity analysis revealed that pressure exerted the most significant influence on mineral/H2/brine system's wettability. These ML model outcomes can be effectively utilized to anticipate hydrogen geological storage capacities and ensure the security of restraint in large-scale developments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
澳澳完成签到,获得积分10
2秒前
2秒前
善学以致用应助纯真抽屉采纳,获得10
3秒前
3秒前
笑笑发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
6秒前
Hello应助cora采纳,获得10
6秒前
汉唐精彩完成签到,获得积分10
7秒前
7秒前
8秒前
田茂青完成签到,获得积分10
8秒前
damian发布了新的文献求助30
8秒前
8秒前
聪明芒果完成签到,获得积分10
8秒前
Vvvvvvv应助虫二先生采纳,获得10
8秒前
西大研究生完成签到 ,获得积分10
8秒前
9秒前
9秒前
呆呆完成签到,获得积分10
9秒前
左一酱完成签到 ,获得积分10
10秒前
平淡南霜发布了新的文献求助10
10秒前
Sweet关注了科研通微信公众号
10秒前
10秒前
赘婿应助wangfu采纳,获得10
11秒前
11秒前
11秒前
pipge完成签到,获得积分20
11秒前
12秒前
澳澳发布了新的文献求助10
12秒前
13秒前
清脆的映天完成签到,获得积分10
13秒前
yl驳回了sweetbearm应助
13秒前
隐形曼青应助2鱼采纳,获得10
13秒前
通~发布了新的文献求助10
13秒前
香蕉觅云应助junzilan采纳,获得10
14秒前
张老涵发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794