亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of Pure Mineral-H2-Brine Wettability Using Data-Driven Machine Learning Modeling: Implications for H2 Geo-Storage

卤水 润湿 计算机科学 矿物 材料科学 人工智能 机器学习 化学 冶金 复合材料 有机化学
作者
Muhammad Ali,Zeeshan Tariq,Muhammad Mubashir,Muhammad Shahzad Kamal,Bicheng Yan,Hussein Hoteit
标识
DOI:10.2523/iptc-23969-ms
摘要

Abstract Greenhouse gases, particularly carbon dioxide (CO2), have the effect of raising the Earth's temperature. To combat this issue and reduce carbon emissions, it is advisable to shift towards the widespread utilization of cleaner fuels, such as hydrogen. The establishment of a global-scale hydrogen economy, coupled with hydrogen geological storage, presents a viable solution to meet the world's energy demands while accommodating peak usage periods. In geological hydrogen (H2) storage, the rock formation wetting characteristics are essential to regulate fluid dynamics, injection rates, the spread of gas within the rock matrix, and safety considerations. The wetting characteristics of minerals within the rock are significantly influenced by geological factors. To assess the wetting behavior of a mineral/H2/brine system under geo-storage conditions, innovative approaches have emerged. This research utilized a combination of advanced machine learning models, such as fully connected neural networks, adaptive gradient boosting, random forests, decision trees, and extreme gradient boosting to forecast the wettability characteristics of a ternary system comprising hydrogen (H2), brine, and specific rock minerals (namely quartz and mica). The predictions were made under various conditions, including different pressures ranging from 0 to 25 MPa, temperatures spanning from 308 to 343 K, and salinities of 10 wt.% NaCl solution. The machine learning models demonstrated remarkable accuracy in predicting mineral/H2/brine system's wettability (contact angles, advancing and receding). Incorporation of various experimental values have established correlations based on ML techniques. The performance and reliability of these models were rigorously assessed using statistical methods and graphical analyses. The deployed ML models consistently provided accurate predictions of wettability across diverse operational scenarios. Notably, the suggested model exhibited a root mean square error (RMSE) of 0.214 during training and 0.810 during testing. Furthermore, sensitivity analysis revealed that pressure exerted the most significant influence on mineral/H2/brine system's wettability. These ML model outcomes can be effectively utilized to anticipate hydrogen geological storage capacities and ensure the security of restraint in large-scale developments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
whj完成签到 ,获得积分10
11秒前
16秒前
可怜的课题组补助完成签到,获得积分20
17秒前
20秒前
浮游应助科研通管家采纳,获得10
30秒前
大个应助科研通管家采纳,获得10
30秒前
33秒前
Benhnhk21完成签到,获得积分10
33秒前
42秒前
48秒前
52秒前
1分钟前
1分钟前
1分钟前
1分钟前
Ye完成签到,获得积分10
1分钟前
olekravchenko发布了新的文献求助10
1分钟前
2分钟前
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
VDC应助科研通管家采纳,获得30
2分钟前
VDC应助科研通管家采纳,获得30
2分钟前
VDC应助科研通管家采纳,获得30
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
在水一方应助鱿鱼起司采纳,获得10
3分钟前
充电宝应助yyh采纳,获得10
3分钟前
3分钟前
3分钟前
培培完成签到 ,获得积分10
3分钟前
yyh发布了新的文献求助10
3分钟前
聪明的黑猫完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
早日发文章完成签到,获得积分10
4分钟前
4分钟前
顏泰楊完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583236
关于积分的说明 14389068
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472848
邀请新用户注册赠送积分活动 1459082
关于科研通互助平台的介绍 1432553