已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of Pure Mineral-H2-Brine Wettability Using Data-Driven Machine Learning Modeling: Implications for H2 Geo-Storage

卤水 润湿 计算机科学 矿物 材料科学 人工智能 机器学习 化学 冶金 复合材料 有机化学
作者
Muhammad Ali,Zeeshan Tariq,Muhammad Mubashir,Muhammad Shahzad Kamal,Bicheng Yan,Hussein Hoteit
标识
DOI:10.2523/iptc-23969-ms
摘要

Abstract Greenhouse gases, particularly carbon dioxide (CO2), have the effect of raising the Earth's temperature. To combat this issue and reduce carbon emissions, it is advisable to shift towards the widespread utilization of cleaner fuels, such as hydrogen. The establishment of a global-scale hydrogen economy, coupled with hydrogen geological storage, presents a viable solution to meet the world's energy demands while accommodating peak usage periods. In geological hydrogen (H2) storage, the rock formation wetting characteristics are essential to regulate fluid dynamics, injection rates, the spread of gas within the rock matrix, and safety considerations. The wetting characteristics of minerals within the rock are significantly influenced by geological factors. To assess the wetting behavior of a mineral/H2/brine system under geo-storage conditions, innovative approaches have emerged. This research utilized a combination of advanced machine learning models, such as fully connected neural networks, adaptive gradient boosting, random forests, decision trees, and extreme gradient boosting to forecast the wettability characteristics of a ternary system comprising hydrogen (H2), brine, and specific rock minerals (namely quartz and mica). The predictions were made under various conditions, including different pressures ranging from 0 to 25 MPa, temperatures spanning from 308 to 343 K, and salinities of 10 wt.% NaCl solution. The machine learning models demonstrated remarkable accuracy in predicting mineral/H2/brine system's wettability (contact angles, advancing and receding). Incorporation of various experimental values have established correlations based on ML techniques. The performance and reliability of these models were rigorously assessed using statistical methods and graphical analyses. The deployed ML models consistently provided accurate predictions of wettability across diverse operational scenarios. Notably, the suggested model exhibited a root mean square error (RMSE) of 0.214 during training and 0.810 during testing. Furthermore, sensitivity analysis revealed that pressure exerted the most significant influence on mineral/H2/brine system's wettability. These ML model outcomes can be effectively utilized to anticipate hydrogen geological storage capacities and ensure the security of restraint in large-scale developments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
香蕉觅云应助别急我先送采纳,获得10
1秒前
Orange应助雨濛濛采纳,获得10
4秒前
你好啊发布了新的文献求助10
5秒前
6秒前
栗子应助Qinjichao采纳,获得10
8秒前
Yan发布了新的文献求助10
9秒前
11秒前
啥子那完成签到,获得积分10
14秒前
iWatchTheMoon应助TS采纳,获得10
14秒前
16秒前
jxr发布了新的文献求助10
17秒前
英俊的铭应助哈哈采纳,获得10
18秒前
AZN完成签到,获得积分10
21秒前
25秒前
打打应助霁予采纳,获得10
27秒前
29秒前
dgzhaolin完成签到,获得积分10
30秒前
34秒前
35秒前
36秒前
一只晴天发布了新的文献求助10
36秒前
眼睛大鸡翅完成签到,获得积分10
36秒前
CipherSage应助暄anbujun采纳,获得10
36秒前
38秒前
39秒前
39秒前
高大的莞发布了新的文献求助10
40秒前
clarence完成签到,获得积分10
42秒前
清风发布了新的文献求助10
43秒前
43秒前
knight0524发布了新的文献求助10
44秒前
45秒前
科研通AI2S应助bukeshuo采纳,获得10
47秒前
清风完成签到,获得积分10
48秒前
暄anbujun发布了新的文献求助10
49秒前
馒头发布了新的文献求助10
50秒前
51秒前
十三月发布了新的文献求助10
51秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162075
求助须知:如何正确求助?哪些是违规求助? 2813189
关于积分的说明 7898918
捐赠科研通 2472263
什么是DOI,文献DOI怎么找? 1316381
科研通“疑难数据库(出版商)”最低求助积分说明 631305
版权声明 602142