A Comprehensive Study on Paddy Leaf Disease Detection using CNN and Random Forest

随机森林 计算机科学 遥感 林业 人工智能 地理
作者
Gautam Rana,Rahul Singh,Akira Singh,Neha Sharma
标识
DOI:10.1109/smartgencon60755.2023.10442234
摘要

In the context of paddy leaf diseases, this study thoroughly assesses disease classification performance. Brown Spot Disease, Blasting Disease, Sheath Blight, Bacterial Leaf Blight, and Leaf Scald are only a few disease types thoroughly evaluated in this study using essential metrics, including Precision, Recall, and F1-Score. Brown Spot Disease achieved a 95.24% Precision value, demonstrating the model's accuracy in making correct predictions. Leaf Scald's Recall value is 93.65%, demonstrating the model's success in identifying true positives. Sheath Blight's F1-Score of 92.52% exemplifies the study's model's all-around success. These results are supported by accuracy rates between 0.96 and 0.98, demonstrating the model's superiority in diagnosing diseases. Class support and proportion numbers are also emphasized for their importance in the study, as they provide crucial context to the investigation by measuring the number of examples in each class and their corresponding representation throughout the dataset. The study demonstrates the model's promise for actual disease management and yield optimization in rice farming, providing a trustworthy instrument for precisely categorizing various paddy leaf diseases. The model's impressive 92.194% accuracy indicates its prowess in categorizing a wide range of data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伊丽莎白完成签到 ,获得积分10
刚刚
刚刚
刚刚
拔丝香芋发布了新的文献求助10
3秒前
念姬发布了新的文献求助10
5秒前
5秒前
5秒前
阿蒙完成签到,获得积分10
6秒前
7秒前
8秒前
科研F5完成签到,获得积分10
9秒前
9秒前
9秒前
11秒前
乒坛巨人发布了新的文献求助10
12秒前
CHAIZH发布了新的文献求助10
13秒前
脑洞疼应助曦小蕊采纳,获得10
13秒前
火以敬完成签到,获得积分10
13秒前
笨笨松发布了新的文献求助10
13秒前
xx完成签到,获得积分10
15秒前
猪猪hero发布了新的文献求助10
16秒前
完美世界应助尺素寸心采纳,获得10
16秒前
靳欣怡完成签到,获得积分10
17秒前
Suttier发布了新的文献求助10
17秒前
bystanding完成签到,获得积分10
20秒前
20秒前
20秒前
SC发布了新的文献求助10
21秒前
ll应助自然的砖头采纳,获得10
22秒前
ll应助自然的砖头采纳,获得10
22秒前
情怀应助春天采纳,获得10
24秒前
英姑应助利昂采纳,获得10
24秒前
宝林发布了新的文献求助10
25秒前
25秒前
pj发布了新的文献求助10
26秒前
科目三应助细心语堂采纳,获得10
26秒前
完美毛豆完成签到,获得积分10
27秒前
欧阳正义发布了新的文献求助10
27秒前
28秒前
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966955
求助须知:如何正确求助?哪些是违规求助? 3512400
关于积分的说明 11163031
捐赠科研通 3247238
什么是DOI,文献DOI怎么找? 1793759
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432