RevealingIn SituMolecular Profiles of Glomerular Cell Types and Substructures with Integrated Imaging Mass Spectrometry and Multiplexed Immunofluorescence Microscopy

质谱成像 马尔迪成像 电池类型 足细胞 原位 生物标志物发现 计算生物学 化学 质谱法 分子成像 细胞 病理 蛋白质组学 基质辅助激光解吸/电离 生物 生物化学 医学 体内 有机化学 色谱法 吸附 解吸 内分泌学 基因 蛋白尿 生物技术
作者
Allison B. Esselman,Felipe Moser,Leonoor Tideman,Lukasz G. Migas,Katerina Djambazova,Madeline E. Colley,Ellie L. Pingry,Nathan Heath Patterson,Melissa A. Farrow,Haichun Yang,Agnes B. Fogo,Mark de Caestecker,Raf Van de Plas,Jeffrey M. Spraggins
标识
DOI:10.1101/2024.02.21.581450
摘要

Abstract Glomeruli filter blood through the coordination of podocytes, mesangial cells, fenestrated endothelial cells, and the glomerular basement membrane. Cellular changes, such as podocyte loss, are associated with pathologies like diabetic kidney disease (DKD). However, little is known regarding the in situ molecular profiles of specific cell types and how these profiles change with disease. Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is well-suited for untargeted tissue mapping of a wide range of molecular classes. Additional imaging modalities can be integrated with MALDI IMS to associate these biomolecular distributions to specific cell types. Herein, we demonstrate an integrated workflow combining MALDI IMS and multiplexed immunofluorescence (MxIF) microscopy. High spatial resolution MALDI IMS (5 µm pixel size) was used to determine lipid distributions within human glomeruli, revealing intra-glomerular lipid heterogeneity. Mass spectrometric data were linked to specific glomerular cell types through new methods that enable MxIF microscopy to be performed on the same tissue section following MALDI IMS without sacrificing signal quality from either modality. A combination of machine-learning approaches was assembled, enabling cell-type segmentation and identification based on MxIF data followed by the mining of cell type or cluster-associated MALDI IMS signatures using classification models and interpretable machine learning. This allowed the automated discovery of spatially specific biomarker candidates for glomerular substructures and cell types. Overall, the work presented here establishes a toolbox for probing molecular signatures of glomerular cell types and substructures within tissue microenvironments and provides a framework that applies to other kidney tissue features and organ systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cui123完成签到 ,获得积分10
1秒前
1秒前
2秒前
乐乐应助学海无涯采纳,获得10
2秒前
wxd完成签到,获得积分10
2秒前
嗯嗯嗯完成签到,获得积分10
3秒前
yf_zhu关注了科研通微信公众号
3秒前
mtfx完成签到 ,获得积分10
3秒前
3秒前
帅气惜霜给帅气惜霜的求助进行了留言
3秒前
3秒前
4秒前
4秒前
5秒前
龙华之士发布了新的文献求助10
5秒前
bc完成签到,获得积分10
6秒前
H71000A发布了新的文献求助10
6秒前
dollarpuff完成签到,获得积分10
6秒前
科研通AI5应助当时明月在采纳,获得10
6秒前
yipyip完成签到,获得积分20
6秒前
Lxxixixi发布了新的文献求助10
7秒前
7秒前
润润轩轩发布了新的文献求助10
8秒前
lichaoyes发布了新的文献求助10
9秒前
王王的狗子完成签到 ,获得积分10
9秒前
zjuroc发布了新的文献求助20
9秒前
10秒前
浅笑发布了新的文献求助10
10秒前
文艺明杰发布了新的文献求助10
10秒前
10秒前
炙热冰夏发布了新的文献求助10
10秒前
10秒前
大意的青槐完成签到,获得积分10
11秒前
11秒前
nalan完成签到,获得积分10
11秒前
NN应助影子采纳,获得10
11秒前
天真思雁完成签到 ,获得积分10
12秒前
在水一方应助火星上白羊采纳,获得10
12秒前
小吕完成签到,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762