DenoiseST: A dual-channel unsupervised deep learning-based denoising method to identify spatial domains and functionally variable genes in spatial transcriptomics

空间分析 人工智能 计算机科学 模式识别(心理学) 聚类分析 判别式 无监督学习 机器学习 稳健性(进化) 数据挖掘 生物 基因 数学 统计 生物化学
作者
Yaxuan Cui,Ruheng Wang,Xin Zeng,Yang Cui,Z. P. Zhu,Kenta Nakai,Xiucai Ye,Tetsuya Sakurai,Leyi Wei
标识
DOI:10.1101/2024.03.04.583438
摘要

Abstract Spatial transcriptomics provides a unique opportunity for understanding cellular organization and function in a spatial context. However, spatial transcriptome exists the problem of dropout noise, exposing a major challenge for accurate downstream data analysis. Here, we proposed DenoiseST, a dual-channel unsupervised adaptive deep learning-based denoising method for data imputing, clustering, and identifying functionally variable genes in spatial transcriptomics. To leverage spatial information and gene expression profiles, we proposed a dual-channel joint learning strategy with graph convolutional networks to sufficiently explore both linear and nonlinear representation embeddings in an unsupervised manner, enhancing the discriminative information learning ability from the global perspectives of data distributions. In particular, DenoiseST enables the adaptively fitting of different gene distributions to the clustered domains and employs tissue-level spatial information to accurately identify functionally variable genes with different spatial resolutions, revealing their enrichment in corresponding gene pathways. Extensive validations on a total of 18 real spatial transcriptome datasets show that DenoiseST obtains excellent performance and results on brain tissue datasets indicate it outperforms the state-of-the-art methods when handling artificial dropout noise with a remarkable margin of ∼15%, demonstrating its effectiveness and robustness. Case study results demonstrate that when applied to identify biological structural regions on human breast cancer spatial transcriptomic datasets, DenoiseST successfully detected biologically significant immune-related structural regions, which are subsequently validated through Gene Ontology (GO), cell-cell communication, and survival analysis. In conclusion, we expect that DenoiseST is a novel and efficient method for spatial transcriptome analysis, offering unique insights into spatial organization and function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XiaoMing发布了新的文献求助10
刚刚
QDU应助花生仁采纳,获得10
1秒前
cici发布了新的文献求助10
1秒前
zhao完成签到,获得积分10
2秒前
高挑的涛发布了新的文献求助10
2秒前
蓬莱山完成签到 ,获得积分10
3秒前
漂亮板栗完成签到,获得积分10
4秒前
失眠的又晴关注了科研通微信公众号
4秒前
5秒前
Myu111111完成签到,获得积分10
5秒前
5秒前
6秒前
LU41关注了科研通微信公众号
6秒前
Hello应助dangan采纳,获得10
6秒前
evijaxmes完成签到,获得积分10
7秒前
毛豆应助BB婷、采纳,获得30
7秒前
7秒前
zjqtyyc完成签到 ,获得积分10
8秒前
Myu111111发布了新的文献求助10
9秒前
prosperp应助dablack采纳,获得10
9秒前
哦哟完成签到,获得积分20
9秒前
10秒前
詩翰完成签到,获得积分10
10秒前
大模型应助一只小锦鲤采纳,获得10
10秒前
11秒前
星辰大海应助宋雪芹采纳,获得10
11秒前
tooty发布了新的文献求助10
11秒前
传奇3应助goldNAN采纳,获得10
12秒前
萱萱发布了新的文献求助10
12秒前
hollow完成签到,获得积分10
13秒前
13秒前
Xu1woo完成签到,获得积分10
14秒前
14秒前
15秒前
hjq发布了新的文献求助10
15秒前
15秒前
15秒前
cindy发布了新的文献求助10
16秒前
17秒前
抒文完成签到,获得积分10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3300712
求助须知:如何正确求助?哪些是违规求助? 2935616
关于积分的说明 8473639
捐赠科研通 2609225
什么是DOI,文献DOI怎么找? 1424568
科研通“疑难数据库(出版商)”最低求助积分说明 662058
邀请新用户注册赠送积分活动 645820