DenoiseST: A dual-channel unsupervised deep learning-based denoising method to identify spatial domains and functionally variable genes in spatial transcriptomics

空间分析 人工智能 计算机科学 模式识别(心理学) 聚类分析 判别式 无监督学习 机器学习 稳健性(进化) 数据挖掘 生物 基因 数学 统计 生物化学
作者
Yaxuan Cui,Ruheng Wang,Xin Zeng,Yang Cui,Z. P. Zhu,Kenta Nakai,Xiucai Ye,Tetsuya Sakurai,Leyi Wei
标识
DOI:10.1101/2024.03.04.583438
摘要

Abstract Spatial transcriptomics provides a unique opportunity for understanding cellular organization and function in a spatial context. However, spatial transcriptome exists the problem of dropout noise, exposing a major challenge for accurate downstream data analysis. Here, we proposed DenoiseST, a dual-channel unsupervised adaptive deep learning-based denoising method for data imputing, clustering, and identifying functionally variable genes in spatial transcriptomics. To leverage spatial information and gene expression profiles, we proposed a dual-channel joint learning strategy with graph convolutional networks to sufficiently explore both linear and nonlinear representation embeddings in an unsupervised manner, enhancing the discriminative information learning ability from the global perspectives of data distributions. In particular, DenoiseST enables the adaptively fitting of different gene distributions to the clustered domains and employs tissue-level spatial information to accurately identify functionally variable genes with different spatial resolutions, revealing their enrichment in corresponding gene pathways. Extensive validations on a total of 18 real spatial transcriptome datasets show that DenoiseST obtains excellent performance and results on brain tissue datasets indicate it outperforms the state-of-the-art methods when handling artificial dropout noise with a remarkable margin of ∼15%, demonstrating its effectiveness and robustness. Case study results demonstrate that when applied to identify biological structural regions on human breast cancer spatial transcriptomic datasets, DenoiseST successfully detected biologically significant immune-related structural regions, which are subsequently validated through Gene Ontology (GO), cell-cell communication, and survival analysis. In conclusion, we expect that DenoiseST is a novel and efficient method for spatial transcriptome analysis, offering unique insights into spatial organization and function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助shi采纳,获得10
1秒前
1秒前
1秒前
于大本事完成签到 ,获得积分10
3秒前
坚定岂愈发布了新的文献求助10
4秒前
PatrickWu发布了新的文献求助10
4秒前
7秒前
坚定岂愈完成签到,获得积分10
9秒前
英姑应助虚幻的不愁采纳,获得10
13秒前
13秒前
彭哒哒发布了新的文献求助10
19秒前
xx完成签到,获得积分10
21秒前
博士后完成签到 ,获得积分10
21秒前
小马甲应助山雀采纳,获得10
22秒前
懵懂的灭男完成签到,获得积分10
24秒前
25秒前
量子星尘发布了新的文献求助10
27秒前
30秒前
wang00wmd发布了新的文献求助20
30秒前
33秒前
tttttt完成签到,获得积分10
35秒前
谷捣猫宁完成签到,获得积分10
37秒前
在水一方应助鬼火采纳,获得10
38秒前
Mirandavia完成签到,获得积分10
39秒前
Pheonix1998完成签到,获得积分10
40秒前
42秒前
Miranda完成签到,获得积分10
43秒前
43秒前
罗中翠发布了新的文献求助10
45秒前
li完成签到 ,获得积分10
45秒前
48秒前
ZZ发布了新的文献求助10
48秒前
51秒前
按时毕业的小林完成签到,获得积分20
51秒前
Bio应助皮孤晴采纳,获得30
51秒前
滴滴哒完成签到,获得积分10
52秒前
wanci应助满眼星辰采纳,获得10
52秒前
Aoka发布了新的文献求助10
52秒前
57秒前
59秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979662
求助须知:如何正确求助?哪些是违规求助? 3523636
关于积分的说明 11218202
捐赠科研通 3261164
什么是DOI,文献DOI怎么找? 1800473
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167