DenoiseST: A dual-channel unsupervised deep learning-based denoising method to identify spatial domains and functionally variable genes in spatial transcriptomics

空间分析 人工智能 计算机科学 模式识别(心理学) 聚类分析 判别式 无监督学习 机器学习 稳健性(进化) 数据挖掘 生物 基因 数学 统计 生物化学
作者
Yaxuan Cui,Ruheng Wang,Xin Zeng,Yang Cui,Z. P. Zhu,Kenta Nakai,Xiucai Ye,Tetsuya Sakurai,Leyi Wei
标识
DOI:10.1101/2024.03.04.583438
摘要

Abstract Spatial transcriptomics provides a unique opportunity for understanding cellular organization and function in a spatial context. However, spatial transcriptome exists the problem of dropout noise, exposing a major challenge for accurate downstream data analysis. Here, we proposed DenoiseST, a dual-channel unsupervised adaptive deep learning-based denoising method for data imputing, clustering, and identifying functionally variable genes in spatial transcriptomics. To leverage spatial information and gene expression profiles, we proposed a dual-channel joint learning strategy with graph convolutional networks to sufficiently explore both linear and nonlinear representation embeddings in an unsupervised manner, enhancing the discriminative information learning ability from the global perspectives of data distributions. In particular, DenoiseST enables the adaptively fitting of different gene distributions to the clustered domains and employs tissue-level spatial information to accurately identify functionally variable genes with different spatial resolutions, revealing their enrichment in corresponding gene pathways. Extensive validations on a total of 18 real spatial transcriptome datasets show that DenoiseST obtains excellent performance and results on brain tissue datasets indicate it outperforms the state-of-the-art methods when handling artificial dropout noise with a remarkable margin of ∼15%, demonstrating its effectiveness and robustness. Case study results demonstrate that when applied to identify biological structural regions on human breast cancer spatial transcriptomic datasets, DenoiseST successfully detected biologically significant immune-related structural regions, which are subsequently validated through Gene Ontology (GO), cell-cell communication, and survival analysis. In conclusion, we expect that DenoiseST is a novel and efficient method for spatial transcriptome analysis, offering unique insights into spatial organization and function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一点发布了新的文献求助10
刚刚
研友_VZG7GZ应助白踏歌采纳,获得20
刚刚
晚若旧发布了新的文献求助10
1秒前
1秒前
yff发布了新的文献求助10
1秒前
莫封叶发布了新的文献求助30
1秒前
可爱的函函应助落后谷兰采纳,获得10
2秒前
2秒前
Dominic7888完成签到,获得积分10
2秒前
烯烃完成签到,获得积分10
2秒前
3秒前
3秒前
老实的采蓝完成签到,获得积分10
3秒前
zhong完成签到,获得积分10
3秒前
4秒前
mof发布了新的文献求助10
4秒前
5秒前
5秒前
笨笨的秋发布了新的文献求助10
5秒前
5秒前
学习发布了新的文献求助10
5秒前
小硕发布了新的文献求助10
6秒前
莫大完成签到 ,获得积分10
6秒前
佚名123发布了新的文献求助10
6秒前
耶耶耶发布了新的文献求助30
7秒前
7秒前
正己化人应助咸柴采纳,获得10
7秒前
打打应助献世采纳,获得10
7秒前
小二郎应助微笑诗柳采纳,获得10
7秒前
7秒前
8秒前
8秒前
科研zhu完成签到,获得积分20
9秒前
浮游应助怕孤单的平卉采纳,获得10
9秒前
小脚丫发布了新的文献求助10
9秒前
9秒前
yang完成签到,获得积分20
10秒前
10秒前
典雅海蓝发布了新的文献求助10
10秒前
zhounan发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5169002
求助须知:如何正确求助?哪些是违规求助? 4360389
关于积分的说明 13576138
捐赠科研通 4207207
什么是DOI,文献DOI怎么找? 2307389
邀请新用户注册赠送积分活动 1306942
关于科研通互助平台的介绍 1253600