Error-based implicit learning in language: the effect of sentence context and constraint in a repetition paradigm

判决 约束(计算机辅助设计) 背景(考古学) 计算机科学 重复(修辞手法) 自然语言处理 人工智能 词(群论) 语音识别 语言学 数学 几何学 生物 哲学 古生物学
作者
Alice Hodapp,Milena Rabovsky
标识
DOI:10.1101/2023.12.13.571412
摘要

Abstract Prediction errors drive implicit learning in language, but the specific mechanisms underlying these effects remain debated. This issue was addressed in an electroencephalogram (EEG) study manipulating the context of a repeated unpredictable word (repetition of the complete sentence or repetition of the word in a new sentence context) and sentence constraint. For the manipulation of sentence constraint, unexpected words were presented either in high constraint (eliciting a precise prediction) or low constraint sentences (not eliciting any specific prediction). Repetition induced reduction of N400 amplitudes and of power in the alpha/beta frequency band was larger for words repeated with their sentence context as compared to words repeated in a new low constraint context, suggesting that implicit learning happens not only at the level of individual items but additionally improves sentence-based predictions. These processing benefits for repeated sentences did not differ between constraint conditions, suggesting that sentence-based prediction update might be proportional to the amount of unpredicted semantic information, rather than to the precision of the prediction that was violated. Additionally, the consequences of high constraint prediction violations, as reflected in a frontal positivity and increased theta band power, were reduced with repetition. Overall, our findings suggest a powerful and specific adaptation mechanism that allows the language system to quickly adapt its predictions when unexpected semantic information is processed, irrespective of sentence constraint, and to reduce potential costs of strong predictions that were violated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿七完成签到,获得积分20
刚刚
刚刚
呼啦啦完成签到 ,获得积分10
刚刚
1秒前
大哈鱼完成签到,获得积分20
1秒前
emmm发布了新的文献求助10
1秒前
1秒前
党阳阳完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
我真找不到完成签到,获得积分0
3秒前
活力书包完成签到 ,获得积分10
3秒前
白云完成签到,获得积分10
3秒前
小二郎应助lin采纳,获得10
3秒前
小二郎应助何安采纳,获得10
3秒前
wanci应助Cindy采纳,获得10
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
汉堡包应助liuyingjuan829采纳,获得10
5秒前
xuan发布了新的文献求助10
5秒前
拾柒发布了新的文献求助10
5秒前
feli完成签到,获得积分10
6秒前
朱迪完成签到 ,获得积分10
7秒前
英俊的铭应助Jerrie采纳,获得10
7秒前
我爱高数完成签到,获得积分10
8秒前
实验室应助感动澜采纳,获得30
8秒前
Liens发布了新的文献求助10
9秒前
whj发布了新的文献求助10
9秒前
9秒前
孤央完成签到 ,获得积分10
9秒前
9秒前
YY完成签到 ,获得积分10
9秒前
迟山完成签到,获得积分10
9秒前
10秒前
一叶知秋完成签到,获得积分10
10秒前
Lawenced发布了新的文献求助10
10秒前
Jasper应助aimanqiankun55采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836