亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Error-based implicit learning in language: the effect of sentence context and constraint in a repetition paradigm

判决 约束(计算机辅助设计) 背景(考古学) 计算机科学 重复(修辞手法) 自然语言处理 人工智能 词(群论) 语音识别 语言学 数学 古生物学 哲学 几何学 生物
作者
Alice Hodapp,Milena Rabovsky
标识
DOI:10.1101/2023.12.13.571412
摘要

Abstract Prediction errors drive implicit learning in language, but the specific mechanisms underlying these effects remain debated. This issue was addressed in an electroencephalogram (EEG) study manipulating the context of a repeated unpredictable word (repetition of the complete sentence or repetition of the word in a new sentence context) and sentence constraint. For the manipulation of sentence constraint, unexpected words were presented either in high constraint (eliciting a precise prediction) or low constraint sentences (not eliciting any specific prediction). Repetition induced reduction of N400 amplitudes and of power in the alpha/beta frequency band was larger for words repeated with their sentence context as compared to words repeated in a new low constraint context, suggesting that implicit learning happens not only at the level of individual items but additionally improves sentence-based predictions. These processing benefits for repeated sentences did not differ between constraint conditions, suggesting that sentence-based prediction update might be proportional to the amount of unpredicted semantic information, rather than to the precision of the prediction that was violated. Additionally, the consequences of high constraint prediction violations, as reflected in a frontal positivity and increased theta band power, were reduced with repetition. Overall, our findings suggest a powerful and specific adaptation mechanism that allows the language system to quickly adapt its predictions when unexpected semantic information is processed, irrespective of sentence constraint, and to reduce potential costs of strong predictions that were violated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助2023采纳,获得10
刚刚
matrixu完成签到,获得积分10
2秒前
,。应助烟花砰砰砰采纳,获得10
3秒前
赘婿应助爱航哥多久了采纳,获得10
3秒前
溪灵完成签到,获得积分20
5秒前
7秒前
12秒前
干破天完成签到 ,获得积分10
19秒前
27秒前
赘婿应助马天行采纳,获得10
28秒前
29秒前
34秒前
ly完成签到,获得积分10
35秒前
Ava应助科研通管家采纳,获得10
37秒前
小二郎应助科研通管家采纳,获得10
37秒前
传奇3应助科研通管家采纳,获得10
37秒前
khh完成签到 ,获得积分10
37秒前
小马甲应助科研通管家采纳,获得10
37秒前
华仔应助科研通管家采纳,获得10
37秒前
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
传奇3应助科研通管家采纳,获得10
38秒前
领导范儿应助科研通管家采纳,获得10
38秒前
852应助Boren采纳,获得10
40秒前
爱航哥多久了完成签到,获得积分10
46秒前
46秒前
英姑应助鳗鱼友琴采纳,获得10
47秒前
Natsume发布了新的文献求助10
52秒前
zzz完成签到 ,获得积分10
55秒前
CHSLN完成签到 ,获得积分10
57秒前
58秒前
大模型应助儒雅的电源采纳,获得10
59秒前
简柠完成签到,获得积分10
1分钟前
1分钟前
鳗鱼友琴发布了新的文献求助10
1分钟前
李小强完成签到,获得积分10
1分钟前
Boren发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4973473
求助须知:如何正确求助?哪些是违规求助? 4229034
关于积分的说明 13171834
捐赠科研通 4017753
什么是DOI,文献DOI怎么找? 2198487
邀请新用户注册赠送积分活动 1211171
关于科研通互助平台的介绍 1126087