Machine learning-driven approaches for synthesizing carbon dots and their applications in photoelectrochemical sensors

纳米技术 计算机科学 光电流 生物相容性 材料科学 机器学习 光电子学 冶金
作者
Roya Mohammadzadeh kakhki,Mojtaba Mohammadpoor
出处
期刊:Inorganic Chemistry Communications [Elsevier BV]
卷期号:159: 111859-111859 被引量:3
标识
DOI:10.1016/j.inoche.2023.111859
摘要

Carbon dots (CDs) have been a subject of great interest among researchers due to their diverse physicochemical properties and numerous advantageous attributes such as good biocompatibility, unique optical properties, low cost, eco-friendliness, abundant functional groups (e.g., amino, hydroxyl, and carboxyl) high stability, and excellent electron mobility. With the rapid advancement of data-driven technologies, machine learning (ML) has gained significant attention as a primary and indispensable tool in different applications in numerous research fields, including the monitoring of chemical reactions. By utilizing machine learning algorithms, the properties of carbon dots can be enhanced, such as fluorescence, stability, and electrocatalytic activity, as well as optimizing the synthesis process. Moreover, machine learning can be utilized to screen carbon dot precursors and predict their properties, providing various advantages in developing carbon dots with superior properties. As a result, machine learning offers numerous benefits in carbon dots synthesis, which has the potential to impact various fields. Photoelectrochemical sensors are a type of chemical sensor that use light to generate a photocurrent, which is then used to detect the presence of a target analyte. These sensors have gained significant attention due to their high sensitivity, selectivity, and low cost, making them a promising tool for a variety of applications in fields such as environmental monitoring and biomedical sensing. Due to their fascinating electronic and photonic properties, CQDs have gained considerable attention in the development of photoelectrochemical sensors. This review article provides an overview of recent advancements in the machine learning synthesis of CQDs and their applications in constructing photoelectrochemical sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
做实验的蘑菇完成签到,获得积分10
2秒前
科研通AI2S应助Keyl采纳,获得10
2秒前
zwd完成签到 ,获得积分10
2秒前
老默发布了新的文献求助10
2秒前
wendy发布了新的文献求助30
3秒前
4秒前
青争完成签到,获得积分10
4秒前
5秒前
5秒前
Jhinnnn完成签到,获得积分10
6秒前
6秒前
6秒前
123完成签到,获得积分10
6秒前
木木林完成签到 ,获得积分10
8秒前
笨笨摇伽发布了新的文献求助10
9秒前
wangyue发布了新的文献求助10
9秒前
lm完成签到 ,获得积分10
10秒前
个性的海之完成签到,获得积分20
10秒前
科研通AI2S应助zouni采纳,获得10
10秒前
11秒前
Ternura发布了新的文献求助10
11秒前
llll发布了新的文献求助10
11秒前
12秒前
王军鹏发布了新的文献求助20
12秒前
可爱的函函应助凉茶采纳,获得10
14秒前
15秒前
15秒前
witty完成签到,获得积分0
16秒前
qwq完成签到,获得积分10
16秒前
爆米花应助方格采纳,获得10
16秒前
淡淡菠萝完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
陈昊发布了新的文献求助10
18秒前
耿春丽发布了新的文献求助10
18秒前
麦克尔完成签到,获得积分10
18秒前
c程序语言完成签到,获得积分10
19秒前
20秒前
20秒前
21秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988827
求助须知:如何正确求助?哪些是违规求助? 3531197
关于积分的说明 11252739
捐赠科研通 3269830
什么是DOI,文献DOI怎么找? 1804815
邀请新用户注册赠送积分活动 881915
科研通“疑难数据库(出版商)”最低求助积分说明 809028