Machine learning-driven approaches for synthesizing carbon dots and their applications in photoelectrochemical sensors

纳米技术 计算机科学 光电流 生物相容性 材料科学 机器学习 光电子学 冶金
作者
Roya Mohammadzadeh kakhki,Mojtaba Mohammadpoor
出处
期刊:Inorganic Chemistry Communications [Elsevier BV]
卷期号:159: 111859-111859 被引量:3
标识
DOI:10.1016/j.inoche.2023.111859
摘要

Carbon dots (CDs) have been a subject of great interest among researchers due to their diverse physicochemical properties and numerous advantageous attributes such as good biocompatibility, unique optical properties, low cost, eco-friendliness, abundant functional groups (e.g., amino, hydroxyl, and carboxyl) high stability, and excellent electron mobility. With the rapid advancement of data-driven technologies, machine learning (ML) has gained significant attention as a primary and indispensable tool in different applications in numerous research fields, including the monitoring of chemical reactions. By utilizing machine learning algorithms, the properties of carbon dots can be enhanced, such as fluorescence, stability, and electrocatalytic activity, as well as optimizing the synthesis process. Moreover, machine learning can be utilized to screen carbon dot precursors and predict their properties, providing various advantages in developing carbon dots with superior properties. As a result, machine learning offers numerous benefits in carbon dots synthesis, which has the potential to impact various fields. Photoelectrochemical sensors are a type of chemical sensor that use light to generate a photocurrent, which is then used to detect the presence of a target analyte. These sensors have gained significant attention due to their high sensitivity, selectivity, and low cost, making them a promising tool for a variety of applications in fields such as environmental monitoring and biomedical sensing. Due to their fascinating electronic and photonic properties, CQDs have gained considerable attention in the development of photoelectrochemical sensors. This review article provides an overview of recent advancements in the machine learning synthesis of CQDs and their applications in constructing photoelectrochemical sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Minicoper完成签到,获得积分10
9秒前
科研通AI5应助普鲁卡因采纳,获得10
9秒前
111完成签到 ,获得积分10
9秒前
奥特曼完成签到 ,获得积分10
9秒前
苏苏完成签到,获得积分10
10秒前
大橙子完成签到,获得积分10
10秒前
kelite完成签到 ,获得积分10
11秒前
火星上的雨柏完成签到 ,获得积分10
12秒前
JY完成签到,获得积分10
13秒前
知行合一完成签到 ,获得积分10
13秒前
16秒前
16秒前
笑林完成签到 ,获得积分10
17秒前
wwl完成签到,获得积分10
17秒前
娟娟完成签到 ,获得积分10
18秒前
Hollen完成签到 ,获得积分10
18秒前
janejane发布了新的文献求助10
19秒前
20秒前
32429606完成签到 ,获得积分10
20秒前
21秒前
普鲁卡因发布了新的文献求助10
23秒前
发个15分的完成签到 ,获得积分10
25秒前
25秒前
wellyou发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
30秒前
自由的鹏涛完成签到,获得积分20
33秒前
34秒前
在水一方应助Nayvue采纳,获得10
34秒前
37秒前
Ryan完成签到,获得积分10
38秒前
General完成签到 ,获得积分10
38秒前
谦让汝燕完成签到,获得积分10
40秒前
wellyou完成签到,获得积分10
41秒前
mint完成签到,获得积分10
43秒前
afli完成签到 ,获得积分0
46秒前
47秒前
Yy完成签到 ,获得积分10
50秒前
Nayvue发布了新的文献求助10
52秒前
feng完成签到,获得积分10
52秒前
淡淡的小蘑菇完成签到 ,获得积分10
55秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022