Crested Porcupine Optimizer: A new nature-inspired metaheuristic

豪猪 计算机科学 人口 数学优化 差异进化 人工智能 算法 数学 生态学 生物 社会学 人口学
作者
Mohamed Abdel‐Basset,Reda Mohamed,Mohamed Abouhawwash
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:284: 111257-111257 被引量:238
标识
DOI:10.1016/j.knosys.2023.111257
摘要

In this paper, a novel nature-inspired meta-heuristic known as Crested Porcupine Optimizer (CPO) and inspired by various defensive behaviors of crested porcupine (CP) is proposed for accurately optimizing various optimization problems, especially those with large-scale. From least aggressive to most aggressive, the crowned porcupine uses four distinct protective mechanisms: sight, sound, odor, and physical attack. The first and second defensive techniques (sight and sound) reflect the exploratory behavior of CPO, whereas the third and fourth defensive strategies (odor and physical attack) reflect the exploitative behavior of CPO. The proposed algorithm presents a novel strategy called a cyclic population reduction technique to simulate the preposition that not all CPs activate their defense mechanisms, but only those threatened. This strategy promotes the convergence rate and population diversity. CPO was validated using three CEC benchmarks (CEC2014, CEC2017, and CEC2020), and its results were compared to those of three categories of existing optimization algorithms, as follows: (i) the most highly-cited optimizers, including gray wolf optimizer (GWO), whale optimization algorithm (WOA), differential evolution, and salp swarm algorithm (SSA); (ii) recently published algorithms, including gradient-based optimizer (GBO), African vultures optimization algorithm (AVOA), Runge Kutta method (RUN), Equilibrium Optimizer (EO), Artificial Gorilla Troops Optimizer (GTO), and Slime Mold Algorithm (SMA); and (iii) high-performance optimizers, such as SHADE, LSHADE, AL-SHADE, LSHADE-cnEpSin, and LSHADE-SPACMA. The statistical analysis revealed that CPO can be nominated as a high-performance optimizer because it had a significantly superior performance in comparison to all competing optimizers for the majority of the test functions in three validated CEC benchmarks. Quantitively, CPO could achieve an improvement rate over the rival optimizers with a percentage up to 83% for CEC2017, 70% for CEC2017, 90% for CEC2020, and 100% for six real-world engineering problems. The source code of CPO is publicly accessible at https://drive.matlab.com/sharing/24c48ec7-bfd5-4c22-9805-42b7c394c691/
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Czt完成签到,获得积分10
1秒前
1秒前
小透明发布了新的文献求助10
1秒前
Xu完成签到,获得积分10
3秒前
3秒前
4秒前
soso完成签到,获得积分10
4秒前
4秒前
李爱国应助神雕001采纳,获得10
4秒前
6秒前
6秒前
小雨完成签到,获得积分10
6秒前
6秒前
搜集达人应助HH采纳,获得10
7秒前
soso发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
Owen应助兔孖采纳,获得10
7秒前
8秒前
chenyun完成签到,获得积分10
8秒前
ccc关闭了ccc文献求助
8秒前
Czt发布了新的文献求助10
8秒前
wanci应助知性的奎采纳,获得10
9秒前
9秒前
9秒前
个性严青发布了新的文献求助10
10秒前
11秒前
ke发布了新的文献求助10
11秒前
赘婿应助冯俊驰采纳,获得10
12秒前
袁江堰完成签到 ,获得积分10
12秒前
Crisp完成签到,获得积分10
14秒前
15秒前
alili完成签到,获得积分10
15秒前
hua发布了新的文献求助10
15秒前
16秒前
17秒前
ha发布了新的文献求助10
18秒前
七彩光完成签到,获得积分10
19秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
Cowries - A Guide to the Gastropod Family Cypraeidae. Volume 2: Shells and Animals 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950964
求助须知:如何正确求助?哪些是违规求助? 4213785
关于积分的说明 13105631
捐赠科研通 3995556
什么是DOI,文献DOI怎么找? 2186991
邀请新用户注册赠送积分活动 1202197
关于科研通互助平台的介绍 1115436