Crested Porcupine Optimizer: A new nature-inspired metaheuristic

豪猪 计算机科学 人口 数学优化 差异进化 人工智能 算法 数学 生态学 生物 社会学 人口学
作者
Mohamed Abdel‐Basset,Reda Mohamed,Mohamed Abouhawwash
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:284: 111257-111257 被引量:152
标识
DOI:10.1016/j.knosys.2023.111257
摘要

In this paper, a novel nature-inspired meta-heuristic known as Crested Porcupine Optimizer (CPO) and inspired by various defensive behaviors of crested porcupine (CP) is proposed for accurately optimizing various optimization problems, especially those with large-scale. From least aggressive to most aggressive, the crowned porcupine uses four distinct protective mechanisms: sight, sound, odor, and physical attack. The first and second defensive techniques (sight and sound) reflect the exploratory behavior of CPO, whereas the third and fourth defensive strategies (odor and physical attack) reflect the exploitative behavior of CPO. The proposed algorithm presents a novel strategy called a cyclic population reduction technique to simulate the preposition that not all CPs activate their defense mechanisms, but only those threatened. This strategy promotes the convergence rate and population diversity. CPO was validated using three CEC benchmarks (CEC2014, CEC2017, and CEC2020), and its results were compared to those of three categories of existing optimization algorithms, as follows: (i) the most highly-cited optimizers, including gray wolf optimizer (GWO), whale optimization algorithm (WOA), differential evolution, and salp swarm algorithm (SSA); (ii) recently published algorithms, including gradient-based optimizer (GBO), African vultures optimization algorithm (AVOA), Runge Kutta method (RUN), Equilibrium Optimizer (EO), Artificial Gorilla Troops Optimizer (GTO), and Slime Mold Algorithm (SMA); and (iii) high-performance optimizers, such as SHADE, LSHADE, AL-SHADE, LSHADE-cnEpSin, and LSHADE-SPACMA. The statistical analysis revealed that CPO can be nominated as a high-performance optimizer because it had a significantly superior performance in comparison to all competing optimizers for the majority of the test functions in three validated CEC benchmarks. Quantitively, CPO could achieve an improvement rate over the rival optimizers with a percentage up to 83% for CEC2017, 70% for CEC2017, 90% for CEC2020, and 100% for six real-world engineering problems. The source code of CPO is publicly accessible at https://drive.matlab.com/sharing/24c48ec7-bfd5-4c22-9805-42b7c394c691/
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助YJ888采纳,获得10
刚刚
surong发布了新的文献求助10
1秒前
Shelby发布了新的文献求助10
1秒前
dyc238100发布了新的文献求助10
2秒前
树精发布了新的文献求助10
2秒前
liii发布了新的文献求助10
2秒前
2秒前
火柴盒完成签到,获得积分10
3秒前
如此这般发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
幸福大白发布了新的文献求助30
6秒前
Akitten关注了科研通微信公众号
6秒前
6秒前
闾丘剑封发布了新的文献求助10
8秒前
天天快乐应助Shelby采纳,获得10
8秒前
8秒前
华仔应助xn201120采纳,获得10
9秒前
木子李发布了新的文献求助10
9秒前
搬砖小土妞完成签到,获得积分20
10秒前
李星发布了新的文献求助10
11秒前
12秒前
12秒前
小哈发布了新的文献求助10
13秒前
14秒前
科研通AI5应助xielunwen采纳,获得10
14秒前
Tireastani应助Jack采纳,获得10
15秒前
Shelby完成签到,获得积分10
15秒前
会飞的扁担完成签到,获得积分10
15秒前
16秒前
幸福大白发布了新的文献求助30
17秒前
Leoniko发布了新的文献求助10
17秒前
17秒前
碧蓝邪欢完成签到,获得积分10
20秒前
小二郎应助YUMI采纳,获得10
20秒前
科研通AI2S应助不回首采纳,获得10
20秒前
听话的亦瑶应助不回首采纳,获得10
20秒前
谢许杯商应助不回首采纳,获得10
20秒前
慕青应助不回首采纳,获得30
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989510
求助须知:如何正确求助?哪些是违规求助? 3531756
关于积分的说明 11254536
捐赠科研通 3270255
什么是DOI,文献DOI怎么找? 1804947
邀请新用户注册赠送积分活动 882113
科研通“疑难数据库(出版商)”最低求助积分说明 809176