Automatic Hypergraph Generation for Enhancing Recommendation With Sparse Optimization

超图 计算机科学 推荐系统 聚类分析 图形 理论计算机科学 情报检索 机器学习 数学 离散数学
作者
Zhenghong Lin,Qishan Yan,Weiming Liu,Shiping Wang,Menghan Wang,Yanchao Tan,Carl Yang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 5680-5693 被引量:1
标识
DOI:10.1109/tmm.2023.3338083
摘要

With the rapid growth of activities on the web, large amounts of interaction data on multimedia platforms are easily accessible, including e-commerce, music sharing, and social media. By discovering various interests of users, recommender systems can improve user satisfaction without accessing overwhelming personal information. Compared to graph-based models, hypergraph-based collaborative filtering has the ability to model higher-order relations besides pair-wise relations among users and items, where the hypergraph structures are mainly obtained from specialized data or external knowledge. However, the above well-constructed hypergraph structures are often not readily available in every situation. To this end, we first propose a novel framework named HGRec, which can enhance recommendation via automatic hypergraph generation. By exploiting the clustering mechanism based on the user/item similarity, we group users and items without additional knowledge for hypergraph structure learning and design a cross-view recommendation module to alleviate the combinatorial gaps between the representations of the local ordinary graph and the global hypergraph. Furthermore, we devise a sparse optimization strategy to ensure the effectiveness of hypergraph structures, where a novel integration of the $\ell _{2,1}$ -norm and optimal transport framework is designed for hypergraph generation. We term the model HGRec with sparse optimization strategy as HGRec++. Extensive experiments on public multi-domain datasets demonstrate the superiority brought by our HGRec++, which gains average 8.1 $\%$ and 9.8 $\%$ improvement over state-of-the-art baselines regarding Recall and NDCG metrics, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助bxdrl采纳,获得10
1秒前
1秒前
2秒前
dlw完成签到,获得积分10
2秒前
小苏完成签到 ,获得积分10
2秒前
了一李发布了新的文献求助30
3秒前
3秒前
4秒前
果果完成签到,获得积分10
4秒前
无情墨镜完成签到,获得积分10
4秒前
5秒前
5秒前
李健应助科研废物采纳,获得10
5秒前
FIN发布了新的文献求助500
7秒前
7秒前
lmz发布了新的文献求助10
7秒前
alunying发布了新的文献求助20
8秒前
Iris发布了新的文献求助10
8秒前
8秒前
90发布了新的文献求助10
9秒前
Criminology34应助无情墨镜采纳,获得10
9秒前
科研通AI6应助芝士采纳,获得10
10秒前
fff完成签到,获得积分10
10秒前
乐观文龙完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
LikeS关注了科研通微信公众号
13秒前
13秒前
mucheng发布了新的文献求助10
14秒前
悲哀藏在现实中完成签到,获得积分10
14秒前
14秒前
天天快乐应助wang采纳,获得10
14秒前
1812完成签到,获得积分10
14秒前
科研通AI6应助1234采纳,获得10
14秒前
赵闯完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
bdJ发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649011
求助须知:如何正确求助?哪些是违规求助? 4777097
关于积分的说明 15046363
捐赠科研通 4807843
什么是DOI,文献DOI怎么找? 2571160
邀请新用户注册赠送积分活动 1527756
关于科研通互助平台的介绍 1486683