Automatic Hypergraph Generation for Enhancing Recommendation With Sparse Optimization

超图 计算机科学 推荐系统 聚类分析 图形 理论计算机科学 情报检索 机器学习 数学 离散数学
作者
Zhenghong Lin,Qishan Yan,Weiming Liu,Shiping Wang,Menghan Wang,Yanchao Tan,Carl Yang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 5680-5693 被引量:1
标识
DOI:10.1109/tmm.2023.3338083
摘要

With the rapid growth of activities on the web, large amounts of interaction data on multimedia platforms are easily accessible, including e-commerce, music sharing, and social media. By discovering various interests of users, recommender systems can improve user satisfaction without accessing overwhelming personal information. Compared to graph-based models, hypergraph-based collaborative filtering has the ability to model higher-order relations besides pair-wise relations among users and items, where the hypergraph structures are mainly obtained from specialized data or external knowledge. However, the above well-constructed hypergraph structures are often not readily available in every situation. To this end, we first propose a novel framework named HGRec, which can enhance recommendation via automatic hypergraph generation. By exploiting the clustering mechanism based on the user/item similarity, we group users and items without additional knowledge for hypergraph structure learning and design a cross-view recommendation module to alleviate the combinatorial gaps between the representations of the local ordinary graph and the global hypergraph. Furthermore, we devise a sparse optimization strategy to ensure the effectiveness of hypergraph structures, where a novel integration of the $\ell _{2,1}$ -norm and optimal transport framework is designed for hypergraph generation. We term the model HGRec with sparse optimization strategy as HGRec++. Extensive experiments on public multi-domain datasets demonstrate the superiority brought by our HGRec++, which gains average 8.1 $\%$ and 9.8 $\%$ improvement over state-of-the-art baselines regarding Recall and NDCG metrics, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助流萤采纳,获得10
刚刚
冷酷严青发布了新的文献求助10
刚刚
Avae完成签到,获得积分10
刚刚
道中道完成签到,获得积分10
刚刚
周周完成签到,获得积分10
1秒前
苏世誉完成签到,获得积分10
1秒前
小乐儿~完成签到,获得积分10
1秒前
小鹿完成签到,获得积分10
1秒前
2秒前
sad发布了新的文献求助10
2秒前
於傲松发布了新的文献求助10
2秒前
2秒前
liangguangyuan完成签到 ,获得积分10
2秒前
123987完成签到,获得积分10
2秒前
2秒前
打打应助Luhh采纳,获得10
2秒前
3秒前
周雪峰完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
无花果应助科研菜狗采纳,获得10
4秒前
杨之玉发布了新的文献求助10
4秒前
张芙瑶完成签到,获得积分10
4秒前
tgh完成签到,获得积分10
4秒前
李萍萍发布了新的文献求助10
5秒前
Zqq完成签到,获得积分10
5秒前
XX发布了新的文献求助10
5秒前
在水一方应助Zzz采纳,获得10
5秒前
小饭完成签到 ,获得积分10
6秒前
6秒前
6秒前
llll完成签到 ,获得积分0
6秒前
6秒前
金海完成签到 ,获得积分10
6秒前
桔桔发布了新的文献求助10
6秒前
6秒前
冷萃咖啡完成签到,获得积分10
7秒前
汤圆发布了新的文献求助10
7秒前
li发布了新的文献求助10
7秒前
星星完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997