亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic Hypergraph Generation for Enhancing Recommendation With Sparse Optimization

超图 计算机科学 推荐系统 聚类分析 图形 理论计算机科学 情报检索 机器学习 数学 离散数学
作者
Zhenghong Lin,Qishan Yan,Weiming Liu,Shiping Wang,Menghan Wang,Yanchao Tan,Carl Yang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 5680-5693 被引量:1
标识
DOI:10.1109/tmm.2023.3338083
摘要

With the rapid growth of activities on the web, large amounts of interaction data on multimedia platforms are easily accessible, including e-commerce, music sharing, and social media. By discovering various interests of users, recommender systems can improve user satisfaction without accessing overwhelming personal information. Compared to graph-based models, hypergraph-based collaborative filtering has the ability to model higher-order relations besides pair-wise relations among users and items, where the hypergraph structures are mainly obtained from specialized data or external knowledge. However, the above well-constructed hypergraph structures are often not readily available in every situation. To this end, we first propose a novel framework named HGRec, which can enhance recommendation via automatic hypergraph generation. By exploiting the clustering mechanism based on the user/item similarity, we group users and items without additional knowledge for hypergraph structure learning and design a cross-view recommendation module to alleviate the combinatorial gaps between the representations of the local ordinary graph and the global hypergraph. Furthermore, we devise a sparse optimization strategy to ensure the effectiveness of hypergraph structures, where a novel integration of the $\ell _{2,1}$ -norm and optimal transport framework is designed for hypergraph generation. We term the model HGRec with sparse optimization strategy as HGRec++. Extensive experiments on public multi-domain datasets demonstrate the superiority brought by our HGRec++, which gains average 8.1 $\%$ and 9.8 $\%$ improvement over state-of-the-art baselines regarding Recall and NDCG metrics, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Freya1528完成签到,获得积分10
9秒前
Freya1528发布了新的文献求助10
39秒前
彭于晏应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
大男完成签到,获得积分10
1分钟前
2分钟前
阳光强炫发布了新的文献求助10
2分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
锦城纯契完成签到 ,获得积分10
3分钟前
HuanChen完成签到 ,获得积分10
3分钟前
阳光强炫关注了科研通微信公众号
3分钟前
否定之否定发布了新的文献求助200
4分钟前
shi hui应助白华苍松采纳,获得10
6分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
慕青应助calmxp采纳,获得10
7分钟前
8分钟前
calmxp发布了新的文献求助10
8分钟前
白华苍松完成签到,获得积分10
8分钟前
9分钟前
sakura发布了新的文献求助10
9分钟前
9分钟前
pinklay完成签到 ,获得积分10
9分钟前
poki完成签到 ,获得积分10
9分钟前
wwee发布了新的文献求助10
10分钟前
天天快乐应助wwee采纳,获得10
10分钟前
小橙子发布了新的文献求助10
10分钟前
sakura完成签到,获得积分10
10分钟前
笔墨留香完成签到,获得积分10
10分钟前
shhoing应助科研通管家采纳,获得10
11分钟前
ZZZ完成签到,获得积分10
11分钟前
锅架了完成签到 ,获得积分10
11分钟前
11分钟前
大个应助小橙子采纳,获得10
12分钟前
13分钟前
婼汐完成签到 ,获得积分10
13分钟前
13分钟前
14分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558600
求助须知:如何正确求助?哪些是违规求助? 4643677
关于积分的说明 14671337
捐赠科研通 4584970
什么是DOI,文献DOI怎么找? 2515285
邀请新用户注册赠送积分活动 1489353
关于科研通互助平台的介绍 1460100