Automatic Hypergraph Generation for Enhancing Recommendation With Sparse Optimization

超图 计算机科学 推荐系统 聚类分析 图形 理论计算机科学 情报检索 机器学习 数学 离散数学
作者
Zhenghong Lin,Qishan Yan,Weiming Liu,Shiping Wang,Menghan Wang,Yanchao Tan,Carl Yang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 5680-5693 被引量:1
标识
DOI:10.1109/tmm.2023.3338083
摘要

With the rapid growth of activities on the web, large amounts of interaction data on multimedia platforms are easily accessible, including e-commerce, music sharing, and social media. By discovering various interests of users, recommender systems can improve user satisfaction without accessing overwhelming personal information. Compared to graph-based models, hypergraph-based collaborative filtering has the ability to model higher-order relations besides pair-wise relations among users and items, where the hypergraph structures are mainly obtained from specialized data or external knowledge. However, the above well-constructed hypergraph structures are often not readily available in every situation. To this end, we first propose a novel framework named HGRec, which can enhance recommendation via automatic hypergraph generation. By exploiting the clustering mechanism based on the user/item similarity, we group users and items without additional knowledge for hypergraph structure learning and design a cross-view recommendation module to alleviate the combinatorial gaps between the representations of the local ordinary graph and the global hypergraph. Furthermore, we devise a sparse optimization strategy to ensure the effectiveness of hypergraph structures, where a novel integration of the $\ell _{2,1}$ -norm and optimal transport framework is designed for hypergraph generation. We term the model HGRec with sparse optimization strategy as HGRec++. Extensive experiments on public multi-domain datasets demonstrate the superiority brought by our HGRec++, which gains average 8.1 $\%$ and 9.8 $\%$ improvement over state-of-the-art baselines regarding Recall and NDCG metrics, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiaoan发布了新的文献求助10
刚刚
mosisa完成签到,获得积分10
刚刚
DDDD发布了新的文献求助10
刚刚
香蕉觅云应助诗谙采纳,获得10
1秒前
1秒前
2秒前
清清完成签到,获得积分10
2秒前
XIN发布了新的文献求助10
2秒前
廉穆完成签到,获得积分10
2秒前
Deiog发布了新的文献求助10
2秒前
Tata完成签到,获得积分10
2秒前
斯文败类应助研友_LjDyNZ采纳,获得20
2秒前
关小乙完成签到,获得积分20
2秒前
后撤步7777发布了新的文献求助20
3秒前
4秒前
研友_VZG7GZ应助萧一采纳,获得10
4秒前
5秒前
小二郎应助永远的车神采纳,获得10
5秒前
5秒前
5秒前
小小井完成签到,获得积分10
5秒前
5秒前
小白完成签到,获得积分20
6秒前
7秒前
搜集达人应助结实的惊蛰采纳,获得10
7秒前
传奇3应助zhangyuting采纳,获得10
8秒前
李健的小迷弟应助zzq采纳,获得10
8秒前
FashionBoy应助yelingyuan采纳,获得10
8秒前
周周完成签到,获得积分10
8秒前
yy发布了新的文献求助10
9秒前
在水一方应助青年才俊采纳,获得10
9秒前
9秒前
lemon完成签到 ,获得积分10
9秒前
深情安青应助Ihang采纳,获得10
10秒前
木头人完成签到,获得积分10
10秒前
隐形的寄云完成签到,获得积分10
10秒前
基米发布了新的文献求助10
11秒前
11秒前
纯情女大完成签到 ,获得积分10
11秒前
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619481
求助须知:如何正确求助?哪些是违规求助? 4704241
关于积分的说明 14926617
捐赠科研通 4760056
什么是DOI,文献DOI怎么找? 2550615
邀请新用户注册赠送积分活动 1513368
关于科研通互助平台的介绍 1474450