Automatic Hypergraph Generation for Enhancing Recommendation With Sparse Optimization

超图 计算机科学 推荐系统 聚类分析 图形 理论计算机科学 情报检索 机器学习 数学 离散数学
作者
Zhenghong Lin,Qishan Yan,Weiming Liu,Shiping Wang,Menghan Wang,Yanchao Tan,Carl Yang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 5680-5693 被引量:1
标识
DOI:10.1109/tmm.2023.3338083
摘要

With the rapid growth of activities on the web, large amounts of interaction data on multimedia platforms are easily accessible, including e-commerce, music sharing, and social media. By discovering various interests of users, recommender systems can improve user satisfaction without accessing overwhelming personal information. Compared to graph-based models, hypergraph-based collaborative filtering has the ability to model higher-order relations besides pair-wise relations among users and items, where the hypergraph structures are mainly obtained from specialized data or external knowledge. However, the above well-constructed hypergraph structures are often not readily available in every situation. To this end, we first propose a novel framework named HGRec, which can enhance recommendation via automatic hypergraph generation. By exploiting the clustering mechanism based on the user/item similarity, we group users and items without additional knowledge for hypergraph structure learning and design a cross-view recommendation module to alleviate the combinatorial gaps between the representations of the local ordinary graph and the global hypergraph. Furthermore, we devise a sparse optimization strategy to ensure the effectiveness of hypergraph structures, where a novel integration of the $\ell _{2,1}$ -norm and optimal transport framework is designed for hypergraph generation. We term the model HGRec with sparse optimization strategy as HGRec++. Extensive experiments on public multi-domain datasets demonstrate the superiority brought by our HGRec++, which gains average 8.1 $\%$ and 9.8 $\%$ improvement over state-of-the-art baselines regarding Recall and NDCG metrics, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
文艺的夏烟完成签到,获得积分10
刚刚
剑客龙发布了新的文献求助10
刚刚
刚刚
从容秋双完成签到,获得积分10
刚刚
传奇3应助Clarie采纳,获得10
刚刚
可靠幼旋完成签到,获得积分10
1秒前
1秒前
mumumuzzz发布了新的文献求助50
1秒前
黄sir发布了新的文献求助10
1秒前
苦瓜人发布了新的文献求助30
2秒前
2秒前
yy发布了新的文献求助10
2秒前
靓丽的悒完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
ZZM完成签到,获得积分10
3秒前
3秒前
刘唐荣完成签到,获得积分10
4秒前
浅尝离白完成签到,获得积分0
5秒前
可靠伟泽发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
haly完成签到 ,获得积分10
6秒前
自信之卉发布了新的文献求助10
6秒前
无花果应助时间丶采纳,获得10
6秒前
6秒前
闪电鼠完成签到,获得积分10
7秒前
7秒前
zyy完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
SUNYAOSUNYAO发布了新的文献求助10
7秒前
tnx应助YCD采纳,获得10
7秒前
7秒前
7秒前
无花果应助舒适的紫丝采纳,获得10
8秒前
深情安青应助小吴同志采纳,获得10
8秒前
dd给dd的求助进行了留言
8秒前
9秒前
令狐天与完成签到,获得积分10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692559
求助须知:如何正确求助?哪些是违规求助? 5089055
关于积分的说明 15208836
捐赠科研通 4849783
什么是DOI,文献DOI怎么找? 2601280
邀请新用户注册赠送积分活动 1553052
关于科研通互助平台的介绍 1511274