Automatic Hypergraph Generation for Enhancing Recommendation With Sparse Optimization

超图 计算机科学 推荐系统 聚类分析 图形 理论计算机科学 情报检索 机器学习 数学 离散数学
作者
Zhenghong Lin,Qishan Yan,Weiming Liu,Shiping Wang,Menghan Wang,Yanchao Tan,Carl Yang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 5680-5693 被引量:1
标识
DOI:10.1109/tmm.2023.3338083
摘要

With the rapid growth of activities on the web, large amounts of interaction data on multimedia platforms are easily accessible, including e-commerce, music sharing, and social media. By discovering various interests of users, recommender systems can improve user satisfaction without accessing overwhelming personal information. Compared to graph-based models, hypergraph-based collaborative filtering has the ability to model higher-order relations besides pair-wise relations among users and items, where the hypergraph structures are mainly obtained from specialized data or external knowledge. However, the above well-constructed hypergraph structures are often not readily available in every situation. To this end, we first propose a novel framework named HGRec, which can enhance recommendation via automatic hypergraph generation. By exploiting the clustering mechanism based on the user/item similarity, we group users and items without additional knowledge for hypergraph structure learning and design a cross-view recommendation module to alleviate the combinatorial gaps between the representations of the local ordinary graph and the global hypergraph. Furthermore, we devise a sparse optimization strategy to ensure the effectiveness of hypergraph structures, where a novel integration of the $\ell _{2,1}$ -norm and optimal transport framework is designed for hypergraph generation. We term the model HGRec with sparse optimization strategy as HGRec++. Extensive experiments on public multi-domain datasets demonstrate the superiority brought by our HGRec++, which gains average 8.1 $\%$ and 9.8 $\%$ improvement over state-of-the-art baselines regarding Recall and NDCG metrics, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Marspe完成签到,获得积分10
2秒前
2秒前
3秒前
小萝卜完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
Jared应助科研小菜采纳,获得10
5秒前
3719left发布了新的文献求助10
7秒前
sk完成签到,获得积分10
7秒前
8秒前
9秒前
abu发布了新的文献求助10
9秒前
9秒前
zhangwe发布了新的文献求助10
9秒前
NexusExplorer应助秀儿采纳,获得10
9秒前
麻辣烫加麻加辣完成签到 ,获得积分20
10秒前
等待若魔发布了新的文献求助10
10秒前
orixero应助高屋建瓴采纳,获得10
12秒前
cathy完成签到 ,获得积分10
13秒前
tscclm完成签到,获得积分20
13秒前
打打应助壹米采纳,获得10
13秒前
zitong完成签到,获得积分10
13秒前
星沉静默发布了新的文献求助10
14秒前
科研通AI6应助CYPCYP采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
qlx发布了新的文献求助10
15秒前
惊艳发布了新的文献求助40
16秒前
17秒前
ding应助貔貅采纳,获得10
18秒前
可靠雪雪发布了新的文献求助10
19秒前
丘比特应助abu采纳,获得10
19秒前
20秒前
star应助zhangwe采纳,获得10
20秒前
21秒前
24秒前
雷培发布了新的文献求助10
25秒前
灿灿完成签到 ,获得积分10
25秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536588
求助须知:如何正确求助?哪些是违规求助? 4624228
关于积分的说明 14591085
捐赠科研通 4564722
什么是DOI,文献DOI怎么找? 2501884
邀请新用户注册赠送积分活动 1480627
关于科研通互助平台的介绍 1451937