Automatic Hypergraph Generation for Enhancing Recommendation With Sparse Optimization

超图 计算机科学 推荐系统 聚类分析 图形 理论计算机科学 情报检索 机器学习 数学 离散数学
作者
Zhenghong Lin,Qishan Yan,Weiming Liu,Shiping Wang,Menghan Wang,Yanchao Tan,Carl Yang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 5680-5693 被引量:1
标识
DOI:10.1109/tmm.2023.3338083
摘要

With the rapid growth of activities on the web, large amounts of interaction data on multimedia platforms are easily accessible, including e-commerce, music sharing, and social media. By discovering various interests of users, recommender systems can improve user satisfaction without accessing overwhelming personal information. Compared to graph-based models, hypergraph-based collaborative filtering has the ability to model higher-order relations besides pair-wise relations among users and items, where the hypergraph structures are mainly obtained from specialized data or external knowledge. However, the above well-constructed hypergraph structures are often not readily available in every situation. To this end, we first propose a novel framework named HGRec, which can enhance recommendation via automatic hypergraph generation. By exploiting the clustering mechanism based on the user/item similarity, we group users and items without additional knowledge for hypergraph structure learning and design a cross-view recommendation module to alleviate the combinatorial gaps between the representations of the local ordinary graph and the global hypergraph. Furthermore, we devise a sparse optimization strategy to ensure the effectiveness of hypergraph structures, where a novel integration of the $\ell _{2,1}$ -norm and optimal transport framework is designed for hypergraph generation. We term the model HGRec with sparse optimization strategy as HGRec++. Extensive experiments on public multi-domain datasets demonstrate the superiority brought by our HGRec++, which gains average 8.1 $\%$ and 9.8 $\%$ improvement over state-of-the-art baselines regarding Recall and NDCG metrics, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
开朗艳一发布了新的文献求助10
4秒前
Emily完成签到,获得积分10
4秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
沉静乌龟发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
mia发布了新的文献求助20
11秒前
木乙完成签到 ,获得积分10
11秒前
11秒前
SYLH应助开朗艳一采纳,获得10
12秒前
务实的寻凝完成签到 ,获得积分10
14秒前
15秒前
Mia发布了新的文献求助30
17秒前
彭剑封发布了新的文献求助10
17秒前
pazhao完成签到,获得积分10
18秒前
冬1发布了新的文献求助10
18秒前
军帽完成签到,获得积分20
20秒前
小蘑菇应助新嘟采纳,获得10
21秒前
21秒前
111完成签到,获得积分20
22秒前
Emily发布了新的文献求助10
22秒前
22秒前
23秒前
24秒前
搜集达人应助DENANANA采纳,获得30
24秒前
良言完成签到 ,获得积分10
24秒前
24秒前
彭剑封完成签到,获得积分10
24秒前
111发布了新的文献求助10
26秒前
26秒前
26秒前
执着雨泽完成签到,获得积分10
27秒前
27秒前
28秒前
wahhhlt发布了新的文献求助10
28秒前
Mia完成签到,获得积分10
29秒前
XZY发布了新的文献求助10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975610
求助须知:如何正确求助?哪些是违规求助? 3519986
关于积分的说明 11200337
捐赠科研通 3256337
什么是DOI,文献DOI怎么找? 1798246
邀请新用户注册赠送积分活动 877446
科研通“疑难数据库(出版商)”最低求助积分说明 806357