Automatic Hypergraph Generation for Enhancing Recommendation With Sparse Optimization

超图 计算机科学 推荐系统 聚类分析 图形 理论计算机科学 情报检索 机器学习 数学 离散数学
作者
Zhenghong Lin,Qishan Yan,Weiming Liu,Shiping Wang,Menghan Wang,Yanchao Tan,Carl Yang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 5680-5693 被引量:1
标识
DOI:10.1109/tmm.2023.3338083
摘要

With the rapid growth of activities on the web, large amounts of interaction data on multimedia platforms are easily accessible, including e-commerce, music sharing, and social media. By discovering various interests of users, recommender systems can improve user satisfaction without accessing overwhelming personal information. Compared to graph-based models, hypergraph-based collaborative filtering has the ability to model higher-order relations besides pair-wise relations among users and items, where the hypergraph structures are mainly obtained from specialized data or external knowledge. However, the above well-constructed hypergraph structures are often not readily available in every situation. To this end, we first propose a novel framework named HGRec, which can enhance recommendation via automatic hypergraph generation. By exploiting the clustering mechanism based on the user/item similarity, we group users and items without additional knowledge for hypergraph structure learning and design a cross-view recommendation module to alleviate the combinatorial gaps between the representations of the local ordinary graph and the global hypergraph. Furthermore, we devise a sparse optimization strategy to ensure the effectiveness of hypergraph structures, where a novel integration of the $\ell _{2,1}$ -norm and optimal transport framework is designed for hypergraph generation. We term the model HGRec with sparse optimization strategy as HGRec++. Extensive experiments on public multi-domain datasets demonstrate the superiority brought by our HGRec++, which gains average 8.1 $\%$ and 9.8 $\%$ improvement over state-of-the-art baselines regarding Recall and NDCG metrics, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我想要当富婆完成签到,获得积分10
1秒前
甜甜冰巧发布了新的文献求助10
1秒前
1秒前
许健完成签到 ,获得积分10
2秒前
充电宝应助Puffkten采纳,获得10
2秒前
only完成签到 ,获得积分10
4秒前
怕黑剑封发布了新的文献求助10
4秒前
6秒前
Eon完成签到,获得积分10
6秒前
7秒前
7秒前
令狐秋双完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
江边鸟完成签到 ,获得积分10
9秒前
微笑翠桃完成签到,获得积分20
10秒前
小开心发布了新的文献求助10
10秒前
Eon发布了新的文献求助10
10秒前
姚美阁完成签到 ,获得积分10
11秒前
mufcyang发布了新的文献求助10
12秒前
13秒前
13秒前
Puffkten发布了新的文献求助10
14秒前
与梦随行2011完成签到,获得积分10
14秒前
14秒前
高哈哈哈完成签到,获得积分10
15秒前
yr发布了新的文献求助10
18秒前
19秒前
微笑翠桃发布了新的文献求助10
22秒前
22秒前
马佳音完成签到 ,获得积分10
23秒前
在水一方应助Eon采纳,获得10
23秒前
TB123发布了新的文献求助10
23秒前
25秒前
JHL完成签到 ,获得积分10
25秒前
27秒前
27秒前
黎是叻熠黎完成签到,获得积分10
28秒前
每天必补一科完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714