Prediction and visualization of moisture content in Tencha drying processes by computer vision and deep learning

含水量 可视化 内容(测量理论) 计算机科学 人工智能 数学 工程类 岩土工程 数学分析
作者
Jie You,Dengshan Li,Zhen Wang,Quansheng Chen,Qin Ouyang
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
卷期号:104 (9): 5486-5494 被引量:3
标识
DOI:10.1002/jsfa.13381
摘要

Abstract BACKGROUND It is important to monitor and control the moisture content throughout the Tencha drying processing procedure so that its quality is ensured. Workers often rely on their senses to perceive the moisture content, leading to relative subjectivity and low reproducibility. Traditional drying methods, which are used for measuring moisture content, are destructive to samples. This research was conducted using computer vision combined with deep learning to detect moisture content during the Tencha drying process. Different color space components of Tencha drying sample images were first extracted by computer vision. The color components were preprocessed using MinMax and Z score. Subsequently, one‐dimensional convolutional neural networks (1D‐CNN), partial least squares, and backpropagation artificial neural networks models were built and compared. RESULTS The 1D‐CNN model and Z score preprocessing achieved superior predictive accuracy, with correlation coefficient of prediction ( R p ) = 0.9548 for moisture content. The migration of moisture content during the Tencha drying process was eventually visualized by mapping its spatial and temporal distributions. CONCLUSION The results indicated that computer vision combined with 1D‐CNN was feasible for moisture prediction during the Tencha drying process. This study provides technical support for the industrial and intelligent production of Tencha. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酸奶冻完成签到,获得积分10
刚刚
我是老大应助zangmo采纳,获得10
1秒前
huhu发布了新的文献求助10
2秒前
科研通AI2S应助olivia采纳,获得10
2秒前
a5119712发布了新的文献求助10
2秒前
yangerbao发布了新的文献求助10
2秒前
清新的枕头完成签到,获得积分10
3秒前
烂漫鲂完成签到,获得积分10
3秒前
凯凯完成签到,获得积分10
4秒前
4秒前
5秒前
Lucas应助恐龙抗狼采纳,获得10
5秒前
大模型应助南北采纳,获得10
5秒前
6秒前
直率的白猫完成签到 ,获得积分10
6秒前
科研小民工应助研友_xnEOX8采纳,获得60
6秒前
7秒前
凯凯发布了新的文献求助10
7秒前
Zn应助狂野芷卉采纳,获得10
8秒前
g7001完成签到,获得积分10
8秒前
9秒前
DAYDAY发布了新的文献求助10
9秒前
斯文败类应助康康XY采纳,获得10
10秒前
Axel完成签到,获得积分10
10秒前
liu完成签到,获得积分10
10秒前
科研通AI5应助wyxdsb采纳,获得10
10秒前
秀丽的冰萍完成签到,获得积分10
10秒前
10秒前
暮光之城发布了新的文献求助10
11秒前
Zn应助sadsada采纳,获得10
11秒前
11秒前
12秒前
12秒前
13秒前
NexusExplorer应助能干发夹采纳,获得10
13秒前
14秒前
小吕小吕完成签到,获得积分10
14秒前
15秒前
某某完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543565
求助须知:如何正确求助?哪些是违规求助? 3120838
关于积分的说明 9344680
捐赠科研通 2818938
什么是DOI,文献DOI怎么找? 1549855
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126