High mechanical properties nanocomposite hydrogel achieved based on montmorillonite and tailored microgel suspensions reinforcing polyacryamide networks

蒙脱石 聚丙烯酰胺 纳米复合材料 材料科学 韧性 极限抗拉强度 自愈水凝胶 聚合物 复合材料 自由基聚合 化学工程 聚合 高分子化学 工程类
作者
Bin Lyu,Yonggang Zhang,Jingjing Ren,Dangge Gao,Yingying Zhou,Yunchuan Wang,Jianzhong Ma
出处
期刊:Colloids and Surfaces A: Physicochemical and Engineering Aspects [Elsevier BV]
卷期号:687: 133566-133566 被引量:2
标识
DOI:10.1016/j.colsurfa.2024.133566
摘要

Hydrogels have attracted much attention because of their softness and water retention ability, but their poor mechanical properties have severely limited their application in various aspects. Herein, we reported a strategy to fabricate polyacrylamide/montmorillonite nanocomposite hydrogel by introducing montmorillonite via a facile and universal two-step method composed of microgel suspension system and in situ free radical polymerization. Compared with microgel, microgel suspension is simpler to prepare and better dispersed in hydrogels, which it could act as physical crosslinking points, interpenetrate with polyacrylamide networks embedded, and serve as sacrifical bonds to strengthen the hydrogels. Simultaneously, montmorillonite synergistically facilitated the formation of a robust and uniform polymer structure through the interaction of hydrogen bonds and polyacrylamide networks, resulting in significant improvements in mechanical properties. As a result, the satisfactory mechanical properties of the nanocomposite hydrogels are achieved at a relative high water content (80 wt%), including a superior compressive strength (95% deformation) of 37.96 MPa, tensile strength of 311.1 ± 8.2 kPa, elongation at break of 316.5 ± 21.1%, Young's modulus of 165.8 ± 7.5 kPa, and excellent toughness of 644.1 ± 21.8 kJ/m3, respectively. In addition, it was found that the hydrogel had excellent cycle compression stability through 10 cycles of loading and unloading at 80% strain. These new high-performance nanocomposite hydrogels are expected to be used in the fields of structural or load-bearing materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅的芷巧完成签到,获得积分10
1秒前
LYD发布了新的文献求助10
2秒前
研友_VZG7GZ应助Mia采纳,获得10
4秒前
4秒前
卜凡发布了新的文献求助10
5秒前
5秒前
金轩完成签到 ,获得积分10
6秒前
俭朴仇血完成签到,获得积分10
7秒前
而荷发布了新的文献求助10
8秒前
9秒前
9秒前
xxm完成签到,获得积分10
10秒前
俭朴仇血发布了新的文献求助10
10秒前
11秒前
Popeye给Popeye的求助进行了留言
14秒前
传奇3应助爹爹采纳,获得10
14秒前
songjing发布了新的文献求助10
15秒前
kai完成签到,获得积分10
17秒前
18秒前
雪白傲蕾完成签到,获得积分10
19秒前
852应助VonJane采纳,获得30
19秒前
20秒前
20秒前
songjing完成签到,获得积分10
21秒前
21秒前
21秒前
冷静尔芙发布了新的文献求助10
22秒前
传奇3应助tiasn采纳,获得10
24秒前
annoying发布了新的文献求助30
24秒前
orixero应助ShengzhangLiu采纳,获得10
24秒前
爹爹发布了新的文献求助10
25秒前
张伟发布了新的文献求助10
26秒前
齐天大圣应助脆皮小小酥采纳,获得20
26秒前
Jasper应助LYD采纳,获得10
27秒前
淡定的过客完成签到,获得积分10
27秒前
汉堡包应助LI采纳,获得10
29秒前
xzy998应助淡淡夕阳采纳,获得10
29秒前
30秒前
游一完成签到,获得积分10
31秒前
小二郎应助科研通管家采纳,获得10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991883
求助须知:如何正确求助?哪些是违规求助? 3533014
关于积分的说明 11260344
捐赠科研通 3272297
什么是DOI,文献DOI怎么找? 1805688
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809425