RFEM: A framework for essential microRNA identification in mice based on rotation forest and multiple feature fusion

小RNA 分类器(UML) 计算机科学 人工智能 鉴定(生物学) 计算生物学 机器学习 模式识别(心理学) 数据挖掘 生物信息学 生物 基因 遗传学 植物
作者
Shu-Hao Wang,Yan Zhao,Chun-Chun Wang,Fei Chu,Lianying Miao,Li Zhang,Linlin Zhuo,Xing Chen
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108177-108177 被引量:9
标识
DOI:10.1016/j.compbiomed.2024.108177
摘要

With the increasing number of microRNAs (miRNAs), identifying essential miRNAs has become an important task that needs to be solved urgently. However, there are few computational methods for essential miRNA identification. Here, we proposed a novel framework called Rotation Forest for Essential MicroRNA identification (RFEM) to predict the essentiality of miRNAs in mice. We first constructed 1264 miRNA features of all miRNA samples by fusing 38 miRNA features obtained from the PESM paper and 1226 miRNA functional features calculated based on miRNA-target gene interactions. Then, we employed 182 training samples with 1264 features to train the rotation forest model, which was applied to compute the essentiality scores of the candidate samples. The main innovations of RFEM were as follows: 1) miRNA functional features were introduced to enrich the diversity of miRNA features; 2) the rotation forest model used decision tree as the base classifier and could increase the difference among base classifiers through feature transformation to achieve better ensemble results. Experimental results show that RFEM significantly outperformed two previous models with the AUC (AUPR) of 0.942 (0.944) in three comparison experiments under 5-fold cross validation, which proved the model's reliable performance. Moreover, ablation study was further conducted to demonstrate the effectiveness of the novel miRNA functional features. Additionally, in the case studies of assessing the essentiality of unlabeled miRNAs, experimental literature confirmed that 7 of the top 10 predicted miRNAs have crucial biological functions in mice. Therefore, RFEM would be a reliable tool for identifying essential miRNAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
北沐完成签到,获得积分10
1秒前
CNS完成签到,获得积分10
2秒前
2秒前
2秒前
默默白桃完成签到,获得积分10
3秒前
不安笑白完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
HPP123发布了新的文献求助10
4秒前
one8only完成签到,获得积分10
5秒前
5秒前
5秒前
棠棠发布了新的文献求助10
6秒前
Feng发布了新的文献求助10
6秒前
6秒前
fd163c完成签到,获得积分10
7秒前
予秋发布了新的文献求助10
7秒前
上官若男应助扣你钠钾泵采纳,获得10
8秒前
林lulu发布了新的文献求助10
8秒前
善学以致用应助zjm采纳,获得10
8秒前
9秒前
化简为繁发布了新的文献求助10
10秒前
SciGPT应助HMZ采纳,获得10
11秒前
jiajia发布了新的文献求助10
11秒前
帅气鹭洋完成签到,获得积分10
11秒前
欢喜的采梦完成签到,获得积分10
11秒前
11秒前
11秒前
郑郑发布了新的文献求助10
12秒前
乐乐应助某某采纳,获得10
12秒前
13秒前
可爱的函函应助xt采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
WB87应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
WB87应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5428950
求助须知:如何正确求助?哪些是违规求助? 4542495
关于积分的说明 14181096
捐赠科研通 4460186
什么是DOI,文献DOI怎么找? 2445634
邀请新用户注册赠送积分活动 1436824
关于科研通互助平台的介绍 1414018