RFEM: A framework for essential microRNA identification in mice based on rotation forest and multiple feature fusion

小RNA 分类器(UML) 计算机科学 人工智能 鉴定(生物学) 计算生物学 机器学习 模式识别(心理学) 数据挖掘 生物信息学 生物 基因 遗传学 植物
作者
Shu-Hao Wang,Yan Zhao,Chun-Chun Wang,Fei Chu,Lianying Miao,Li Zhang,Linlin Zhuo,Xing Chen
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:171: 108177-108177 被引量:9
标识
DOI:10.1016/j.compbiomed.2024.108177
摘要

With the increasing number of microRNAs (miRNAs), identifying essential miRNAs has become an important task that needs to be solved urgently. However, there are few computational methods for essential miRNA identification. Here, we proposed a novel framework called Rotation Forest for Essential MicroRNA identification (RFEM) to predict the essentiality of miRNAs in mice. We first constructed 1264 miRNA features of all miRNA samples by fusing 38 miRNA features obtained from the PESM paper and 1226 miRNA functional features calculated based on miRNA-target gene interactions. Then, we employed 182 training samples with 1264 features to train the rotation forest model, which was applied to compute the essentiality scores of the candidate samples. The main innovations of RFEM were as follows: 1) miRNA functional features were introduced to enrich the diversity of miRNA features; 2) the rotation forest model used decision tree as the base classifier and could increase the difference among base classifiers through feature transformation to achieve better ensemble results. Experimental results show that RFEM significantly outperformed two previous models with the AUC (AUPR) of 0.942 (0.944) in three comparison experiments under 5-fold cross validation, which proved the model's reliable performance. Moreover, ablation study was further conducted to demonstrate the effectiveness of the novel miRNA functional features. Additionally, in the case studies of assessing the essentiality of unlabeled miRNAs, experimental literature confirmed that 7 of the top 10 predicted miRNAs have crucial biological functions in mice. Therefore, RFEM would be a reliable tool for identifying essential miRNAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
src发布了新的文献求助10
1秒前
打打应助yyy采纳,获得10
3秒前
所所应助噗噜噜采纳,获得30
3秒前
4秒前
自然剑完成签到,获得积分10
5秒前
5秒前
小超人完成签到 ,获得积分10
6秒前
fr完成签到,获得积分10
7秒前
爆米花应助SHD采纳,获得10
7秒前
CodeCraft应助无趣采纳,获得10
7秒前
自然剑发布了新的文献求助10
7秒前
思源应助DawudShan采纳,获得10
8秒前
脑洞疼应助陈晨采纳,获得10
8秒前
tiantian发布了新的文献求助10
10秒前
慕青应助123采纳,获得10
11秒前
桐桐应助聆听采纳,获得10
12秒前
嚯嚯完成签到,获得积分10
13秒前
yue完成签到,获得积分10
13秒前
applelpypies完成签到 ,获得积分0
13秒前
量子星尘发布了新的文献求助10
14秒前
眼睛大雨筠应助lewis17采纳,获得30
15秒前
15秒前
16秒前
搬砖的发布了新的文献求助10
16秒前
NexusExplorer应助疯狂的半山采纳,获得10
20秒前
SHD发布了新的文献求助10
21秒前
乐观的大叔完成签到 ,获得积分10
21秒前
哈哈哈哈发布了新的文献求助10
22秒前
buqi应助yyy采纳,获得10
23秒前
24秒前
BUCI发布了新的文献求助10
25秒前
26秒前
汉堡包应助科研通管家采纳,获得10
28秒前
李爱国应助科研通管家采纳,获得10
28秒前
开心浩阑应助科研通管家采纳,获得20
28秒前
开心浩阑应助科研通管家采纳,获得20
28秒前
Luke完成签到,获得积分10
30秒前
31秒前
lxlcx应助核桃采纳,获得50
31秒前
丘比特应助核桃采纳,获得10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958021
求助须知:如何正确求助?哪些是违规求助? 3504166
关于积分的说明 11117289
捐赠科研通 3235515
什么是DOI,文献DOI怎么找? 1788289
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511