Bioactivity predictions and virtual screening using machine learning predictive model

机器学习 虚拟筛选 人工智能 计算机科学 随机森林 Python(编程语言) 可靠性 生物信息学 药物发现 化学数据库 训练集 生物信息学 化学 生物 基因 操作系统 生物化学 法学 政治学
作者
Noor Fatima Siddiqui,Pinky Vishwakarma,Shikha Thakur,Hemant R. Jadhav
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:: 1-20
标识
DOI:10.1080/07391102.2023.2300132
摘要

Recently, there has been significant attention on machine learning algorithms for predictive modeling. Prediction models for enzyme inhibitors are limited, and it is essential to account for chemical biases while developing them. The lack of repeatability in available models and chemical bias issues constrain drug discovery and development. A new prediction model for enzyme inhibitors has been developed, and the model efficacy was checked using Dipeptidyl peptidase 4 (DPP-4) inhibitors. A Python script was prepared and can be provided for personal use upon request. Among various machine learning algorithms, it was found that Random Forest offers the best accuracy. Two models were compared, one with diverse training and test data and the other with a random split. It was concluded that machine learning predictive models based on the Murcko scaffold can address chemical bias concerns. In-silico screening of the Drug Bank database identified two molecules against DPP-4, which are previously proven hit molecules. The approach was further validated through molecular docking studies and molecular dynamics simulations, demonstrating the credibility and relevance of the developed model for future investigations and potential translation into clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Joe完成签到,获得积分20
刚刚
刚刚
F_ken完成签到 ,获得积分10
3秒前
炙热冰夏发布了新的文献求助10
3秒前
酷酷的穆发布了新的文献求助10
4秒前
春华秋实完成签到,获得积分20
4秒前
4秒前
4秒前
诚心梦之完成签到,获得积分10
5秒前
自然芯完成签到,获得积分20
7秒前
马吉克wang完成签到,获得积分10
7秒前
weiyu_u发布了新的文献求助30
8秒前
8秒前
春华秋实发布了新的文献求助10
8秒前
8秒前
9秒前
不配.给wufang的求助进行了留言
9秒前
Akim应助24采纳,获得10
10秒前
大意的绿蓉完成签到,获得积分10
11秒前
wangayting发布了新的文献求助30
11秒前
hsy完成签到,获得积分10
14秒前
Tom发布了新的文献求助10
16秒前
stuffmatter应助kento采纳,获得50
16秒前
hsy发布了新的文献求助10
17秒前
所所应助腾腾腾采纳,获得10
19秒前
科研通AI2S应助hsy采纳,获得10
22秒前
李爱国应助hsy采纳,获得10
22秒前
脑洞疼应助春华秋实采纳,获得10
23秒前
23秒前
23秒前
25秒前
搜集达人应助炙热冰夏采纳,获得10
25秒前
26秒前
许0602完成签到,获得积分10
27秒前
sss发布了新的文献求助10
27秒前
光亮向露完成签到,获得积分10
28秒前
28秒前
28秒前
29秒前
司为完成签到 ,获得积分10
29秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137930
求助须知:如何正确求助?哪些是违规求助? 2788832
关于积分的说明 7788793
捐赠科研通 2445241
什么是DOI,文献DOI怎么找? 1300236
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046