Bioactivity predictions and virtual screening using machine learning predictive model

机器学习 虚拟筛选 人工智能 计算机科学 随机森林 Python(编程语言) 可靠性 生物信息学 药物发现 化学数据库 训练集 生物信息学 化学 生物 生物化学 政治学 基因 法学 操作系统
作者
Noor Fatima Siddiqui,Pinky Vishwakarma,Shikha Thakur,Hemant R. Jadhav
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:: 1-20
标识
DOI:10.1080/07391102.2023.2300132
摘要

Recently, there has been significant attention on machine learning algorithms for predictive modeling. Prediction models for enzyme inhibitors are limited, and it is essential to account for chemical biases while developing them. The lack of repeatability in available models and chemical bias issues constrain drug discovery and development. A new prediction model for enzyme inhibitors has been developed, and the model efficacy was checked using Dipeptidyl peptidase 4 (DPP-4) inhibitors. A Python script was prepared and can be provided for personal use upon request. Among various machine learning algorithms, it was found that Random Forest offers the best accuracy. Two models were compared, one with diverse training and test data and the other with a random split. It was concluded that machine learning predictive models based on the Murcko scaffold can address chemical bias concerns. In-silico screening of the Drug Bank database identified two molecules against DPP-4, which are previously proven hit molecules. The approach was further validated through molecular docking studies and molecular dynamics simulations, demonstrating the credibility and relevance of the developed model for future investigations and potential translation into clinical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助牛蛙丶丶采纳,获得10
刚刚
liu发布了新的文献求助10
刚刚
灵寒完成签到 ,获得积分10
1秒前
1秒前
1秒前
大海发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
丘比特应助我不是阿良采纳,获得10
2秒前
CC完成签到,获得积分10
2秒前
果汁发布了新的文献求助50
3秒前
研友_VZG7GZ应助LJM采纳,获得10
3秒前
李健应助dong采纳,获得10
3秒前
盒子完成签到,获得积分20
4秒前
无限大门完成签到,获得积分20
4秒前
大模型应助WTL采纳,获得10
5秒前
5秒前
果汁发布了新的文献求助10
5秒前
斯文败类应助非凡采纳,获得10
5秒前
6秒前
6秒前
健忘捕发布了新的文献求助10
6秒前
6秒前
soook完成签到,获得积分20
7秒前
玉米侠完成签到 ,获得积分10
7秒前
7秒前
7秒前
7秒前
想发paper的金鱼完成签到,获得积分10
8秒前
二个完成签到,获得积分10
8秒前
优雅山菡完成签到,获得积分20
8秒前
听闻发布了新的文献求助10
8秒前
CodeCraft应助wenwenerya采纳,获得10
8秒前
zxc167完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
善学以致用应助PaoPo采纳,获得10
8秒前
怂怂发布了新的文献求助10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625062
求助须知:如何正确求助?哪些是违规求助? 4710920
关于积分的说明 14953055
捐赠科研通 4778964
什么是DOI,文献DOI怎么找? 2553547
邀请新用户注册赠送积分活动 1515490
关于科研通互助平台的介绍 1475770