Bioactivity predictions and virtual screening using machine learning predictive model

机器学习 虚拟筛选 人工智能 计算机科学 随机森林 Python(编程语言) 可靠性 生物信息学 药物发现 化学数据库 训练集 生物信息学 化学 生物 生物化学 政治学 基因 法学 操作系统
作者
Noor Fatima Siddiqui,Pinky Vishwakarma,Shikha Thakur,Hemant R. Jadhav
出处
期刊:Journal of Biomolecular Structure & Dynamics [Taylor & Francis]
卷期号:: 1-20
标识
DOI:10.1080/07391102.2023.2300132
摘要

Recently, there has been significant attention on machine learning algorithms for predictive modeling. Prediction models for enzyme inhibitors are limited, and it is essential to account for chemical biases while developing them. The lack of repeatability in available models and chemical bias issues constrain drug discovery and development. A new prediction model for enzyme inhibitors has been developed, and the model efficacy was checked using Dipeptidyl peptidase 4 (DPP-4) inhibitors. A Python script was prepared and can be provided for personal use upon request. Among various machine learning algorithms, it was found that Random Forest offers the best accuracy. Two models were compared, one with diverse training and test data and the other with a random split. It was concluded that machine learning predictive models based on the Murcko scaffold can address chemical bias concerns. In-silico screening of the Drug Bank database identified two molecules against DPP-4, which are previously proven hit molecules. The approach was further validated through molecular docking studies and molecular dynamics simulations, demonstrating the credibility and relevance of the developed model for future investigations and potential translation into clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
还好完成签到,获得积分10
3秒前
3秒前
5秒前
淡淡的苑睐完成签到,获得积分10
5秒前
科目三应助幸福的半蕾采纳,获得30
6秒前
毛益聪发布了新的文献求助10
7秒前
晒太阳的乌龟完成签到,获得积分10
7秒前
踏实的南琴完成签到 ,获得积分10
8秒前
12秒前
丘比特应助包谷林采纳,获得10
13秒前
13秒前
15秒前
16秒前
17秒前
CR7应助窦长昕采纳,获得20
18秒前
Akim应助guangshuang采纳,获得10
19秒前
却却发布了新的文献求助20
20秒前
20秒前
洁净的静芙完成签到,获得积分10
21秒前
22秒前
22秒前
Chanpi完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
24秒前
25秒前
赘婿应助aaaaa采纳,获得10
26秒前
27秒前
fanmo完成签到 ,获得积分0
27秒前
28秒前
28秒前
saara完成签到,获得积分10
29秒前
jinzhen发布了新的文献求助10
29秒前
童宝完成签到,获得积分20
29秒前
31秒前
32秒前
32秒前
zx发布了新的文献求助10
33秒前
我是老大应助时尚以南采纳,获得10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959179
求助须知:如何正确求助?哪些是违规求助? 3505472
关于积分的说明 11124101
捐赠科研通 3237190
什么是DOI,文献DOI怎么找? 1789003
邀请新用户注册赠送积分活动 871507
科研通“疑难数据库(出版商)”最低求助积分说明 802824