Contrastive learning of graphs under label noise

计算机科学 过度拟合 人工智能 图形 机器学习 熵(时间箭头) 交叉熵 模式识别(心理学) 人工神经网络 理论计算机科学 物理 量子力学
作者
Xianxian Li,Qiyu Li,De Li,Haodong Qian,Jinyan Wang
出处
期刊:Neural Networks [Elsevier]
卷期号:172: 106113-106113 被引量:1
标识
DOI:10.1016/j.neunet.2024.106113
摘要

In the domain of graph-structured data learning, semi-supervised node classification serves as a critical task, relying mainly on the information from unlabeled nodes and a minor fraction of labeled nodes for training. However, real-world graph-structured data often suffer from label noise, which significantly undermines the performance of Graph Neural Networks (GNNs). This problem becomes increasingly severe in situations where labels are scarce. To tackle this issue of sparse and noisy labels, we propose a novel approach Contrastive Robust Graph Neural Network (CR-GNN), Firstly, considering label sparsity and noise, we employ unsupervised contrastive loss and further incorporate homophily in the graph structure, thus introducing neighbor contrastive loss. Moreover, data augmentation is typically used to construct positive and negative samples in contrastive learning, which may result in inconsistent prediction outcomes. Based on this, we propose a dynamic cross-entropy loss, which selects the nodes with consistent predictions as reliable nodes for cross-entropy loss and benefits to mitigate the overfitting to labeling noise. Finally, we propose cross-space consistency to narrow the semantic gap between the contrast and classification spaces. Extensive experiments on multiple publicly available datasets demonstrate that CR-GNN notably outperforms existing methods in resisting label noise.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
2秒前
迷路谷南完成签到,获得积分10
2秒前
2秒前
wjy完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
Hammery关注了科研通微信公众号
3秒前
白白完成签到,获得积分10
3秒前
3秒前
纷扰发布了新的文献求助10
3秒前
demonsnow应助sc采纳,获得10
4秒前
懵懂的绿真完成签到,获得积分10
4秒前
4秒前
CipherSage应助晓桐采纳,获得10
4秒前
syy080837完成签到,获得积分10
5秒前
乐观伟诚发布了新的文献求助10
5秒前
凤梨罐头完成签到,获得积分10
5秒前
执着的觅露完成签到 ,获得积分10
5秒前
鳗鱼绿兰发布了新的文献求助10
6秒前
6秒前
zhangyu发布了新的文献求助10
6秒前
zyp3344完成签到,获得积分10
6秒前
小柠檬发布了新的文献求助20
6秒前
烟花应助Evander采纳,获得10
6秒前
漆漆发布了新的文献求助10
6秒前
FlipFlops发布了新的文献求助10
7秒前
7秒前
7秒前
ss发布了新的文献求助10
7秒前
7秒前
7秒前
包包完成签到,获得积分10
7秒前
7秒前
cc完成签到 ,获得积分10
8秒前
smottom应助碎碎采纳,获得10
8秒前
xin完成签到,获得积分20
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667488
求助须知:如何正确求助?哪些是违规求助? 4886195
关于积分的说明 15120469
捐赠科研通 4826311
什么是DOI,文献DOI怎么找? 2583920
邀请新用户注册赠送积分活动 1537973
关于科研通互助平台的介绍 1496095