Contrastive learning of graphs under label noise

计算机科学 过度拟合 人工智能 图形 机器学习 熵(时间箭头) 交叉熵 模式识别(心理学) 人工神经网络 理论计算机科学 物理 量子力学
作者
Xianxian Li,Qiyu Li,De Li,Haodong Qian,Jinyan Wang
出处
期刊:Neural Networks [Elsevier]
卷期号:172: 106113-106113
标识
DOI:10.1016/j.neunet.2024.106113
摘要

In the domain of graph-structured data learning, semi-supervised node classification serves as a critical task, relying mainly on the information from unlabeled nodes and a minor fraction of labeled nodes for training. However, real-world graph-structured data often suffer from label noise, which significantly undermines the performance of Graph Neural Networks (GNNs). This problem becomes increasingly severe in situations where labels are scarce. To tackle this issue of sparse and noisy labels, we propose a novel approach Contrastive Robust Graph Neural Network (CR-GNN), Firstly, considering label sparsity and noise, we employ unsupervised contrastive loss and further incorporate homophily in the graph structure, thus introducing neighbor contrastive loss. Moreover, data augmentation is typically used to construct positive and negative samples in contrastive learning, which may result in inconsistent prediction outcomes. Based on this, we propose a dynamic cross-entropy loss, which selects the nodes with consistent predictions as reliable nodes for cross-entropy loss and benefits to mitigate the overfitting to labeling noise. Finally, we propose cross-space consistency to narrow the semantic gap between the contrast and classification spaces. Extensive experiments on multiple publicly available datasets demonstrate that CR-GNN notably outperforms existing methods in resisting label noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三十四画生完成签到 ,获得积分10
刚刚
乒坛巨人完成签到 ,获得积分10
刚刚
科研通AI2S应助赵辰宇采纳,获得10
2秒前
bubble完成签到,获得积分10
5秒前
晚风吹起来完成签到,获得积分20
5秒前
憨小郁完成签到,获得积分10
5秒前
落后的小蕊完成签到,获得积分10
6秒前
Neoshine完成签到,获得积分10
17秒前
幽默的乘风完成签到,获得积分0
20秒前
syt完成签到,获得积分10
21秒前
21秒前
爱因斯坦那个和我一样的科学家完成签到,获得积分10
21秒前
tutu完成签到,获得积分10
21秒前
nuki完成签到 ,获得积分10
26秒前
白紫寒完成签到 ,获得积分10
26秒前
牦牛完成签到,获得积分10
27秒前
wind完成签到,获得积分10
30秒前
DyLan完成签到,获得积分10
32秒前
RayLam完成签到,获得积分10
35秒前
yyy1234567完成签到 ,获得积分10
35秒前
等待断秋完成签到,获得积分10
35秒前
Da-ming完成签到,获得积分10
37秒前
37秒前
健康的访枫完成签到 ,获得积分10
37秒前
彼得大帝完成签到,获得积分10
38秒前
魁拔蛮吉完成签到 ,获得积分10
39秒前
生5clean发布了新的文献求助10
43秒前
43秒前
笨笨凡松完成签到 ,获得积分10
43秒前
Franklin发布了新的文献求助10
44秒前
聪慧橘子发布了新的文献求助10
47秒前
爱吃冰淇淋的皇甫元青完成签到 ,获得积分10
48秒前
bzc229完成签到,获得积分10
48秒前
li完成签到,获得积分10
49秒前
xiaohongmao完成签到,获得积分10
49秒前
北极星完成签到 ,获得积分10
52秒前
不知道完成签到,获得积分10
53秒前
生5clean完成签到,获得积分10
53秒前
聪慧橘子完成签到,获得积分10
54秒前
英姑应助Xu采纳,获得10
54秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162519
求助须知:如何正确求助?哪些是违规求助? 2813358
关于积分的说明 7900144
捐赠科研通 2472938
什么是DOI,文献DOI怎么找? 1316594
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175