Contrastive learning of graphs under label noise

计算机科学 过度拟合 人工智能 图形 机器学习 熵(时间箭头) 交叉熵 模式识别(心理学) 人工神经网络 理论计算机科学 物理 量子力学
作者
Xianxian Li,Qiyu Li,De Li,Haodong Qian,Jinyan Wang
出处
期刊:Neural Networks [Elsevier]
卷期号:172: 106113-106113 被引量:1
标识
DOI:10.1016/j.neunet.2024.106113
摘要

In the domain of graph-structured data learning, semi-supervised node classification serves as a critical task, relying mainly on the information from unlabeled nodes and a minor fraction of labeled nodes for training. However, real-world graph-structured data often suffer from label noise, which significantly undermines the performance of Graph Neural Networks (GNNs). This problem becomes increasingly severe in situations where labels are scarce. To tackle this issue of sparse and noisy labels, we propose a novel approach Contrastive Robust Graph Neural Network (CR-GNN), Firstly, considering label sparsity and noise, we employ unsupervised contrastive loss and further incorporate homophily in the graph structure, thus introducing neighbor contrastive loss. Moreover, data augmentation is typically used to construct positive and negative samples in contrastive learning, which may result in inconsistent prediction outcomes. Based on this, we propose a dynamic cross-entropy loss, which selects the nodes with consistent predictions as reliable nodes for cross-entropy loss and benefits to mitigate the overfitting to labeling noise. Finally, we propose cross-space consistency to narrow the semantic gap between the contrast and classification spaces. Extensive experiments on multiple publicly available datasets demonstrate that CR-GNN notably outperforms existing methods in resisting label noise.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
may完成签到 ,获得积分10
刚刚
2秒前
领导范儿应助wwww采纳,获得10
3秒前
热心鱼完成签到,获得积分10
4秒前
Hey发布了新的文献求助10
4秒前
Merry8558完成签到,获得积分10
5秒前
coc发布了新的文献求助10
6秒前
NexusExplorer应助Ico采纳,获得50
6秒前
量子星尘发布了新的文献求助10
7秒前
科目三应助felinus采纳,获得10
7秒前
庸俗完成签到,获得积分10
7秒前
科研通AI6应助YYYYZ采纳,获得10
8秒前
10秒前
XIAOJU_U完成签到 ,获得积分10
11秒前
热心鱼发布了新的文献求助10
11秒前
CipherSage应助Quhang采纳,获得10
11秒前
机智的天宇完成签到,获得积分10
12秒前
13秒前
沧沧完成签到,获得积分10
13秒前
13秒前
dann完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
15秒前
15秒前
16秒前
16秒前
吱唔朱完成签到,获得积分20
16秒前
16秒前
小透明发布了新的文献求助150
17秒前
18秒前
18秒前
19秒前
19秒前
19秒前
19秒前
19秒前
zbzfp发布了新的文献求助10
19秒前
哈哈哈发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637553
求助须知:如何正确求助?哪些是违规求助? 4743563
关于积分的说明 14999628
捐赠科研通 4795653
什么是DOI,文献DOI怎么找? 2562146
邀请新用户注册赠送积分活动 1521595
关于科研通互助平台的介绍 1481573