亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Contrastive learning of graphs under label noise

计算机科学 过度拟合 人工智能 图形 机器学习 熵(时间箭头) 交叉熵 模式识别(心理学) 人工神经网络 理论计算机科学 物理 量子力学
作者
Xianxian Li,Qiyu Li,De Li,Haodong Qian,Jinyan Wang
出处
期刊:Neural Networks [Elsevier BV]
卷期号:172: 106113-106113 被引量:1
标识
DOI:10.1016/j.neunet.2024.106113
摘要

In the domain of graph-structured data learning, semi-supervised node classification serves as a critical task, relying mainly on the information from unlabeled nodes and a minor fraction of labeled nodes for training. However, real-world graph-structured data often suffer from label noise, which significantly undermines the performance of Graph Neural Networks (GNNs). This problem becomes increasingly severe in situations where labels are scarce. To tackle this issue of sparse and noisy labels, we propose a novel approach Contrastive Robust Graph Neural Network (CR-GNN), Firstly, considering label sparsity and noise, we employ unsupervised contrastive loss and further incorporate homophily in the graph structure, thus introducing neighbor contrastive loss. Moreover, data augmentation is typically used to construct positive and negative samples in contrastive learning, which may result in inconsistent prediction outcomes. Based on this, we propose a dynamic cross-entropy loss, which selects the nodes with consistent predictions as reliable nodes for cross-entropy loss and benefits to mitigate the overfitting to labeling noise. Finally, we propose cross-space consistency to narrow the semantic gap between the contrast and classification spaces. Extensive experiments on multiple publicly available datasets demonstrate that CR-GNN notably outperforms existing methods in resisting label noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助科研通管家采纳,获得10
6秒前
我是老大应助闫雪采纳,获得10
6秒前
17秒前
hongtao完成签到 ,获得积分10
22秒前
1分钟前
Jasper应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
璐璐侠完成签到,获得积分10
2分钟前
3分钟前
AJ完成签到 ,获得积分10
3分钟前
xiaozou55完成签到 ,获得积分10
3分钟前
binyao2024完成签到,获得积分10
4分钟前
光亮静槐完成签到 ,获得积分10
4分钟前
lrl350495627发布了新的文献求助10
5分钟前
lrl350495627完成签到,获得积分10
6分钟前
GingerF应助科研通管家采纳,获得50
6分钟前
FashionBoy应助andrele采纳,获得10
6分钟前
7分钟前
自然芷文发布了新的文献求助10
7分钟前
7分钟前
我是老大应助自然芷文采纳,获得10
7分钟前
iNk应助吗喽采纳,获得20
7分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
8分钟前
打打应助科研通管家采纳,获得10
8分钟前
Charlie完成签到 ,获得积分10
8分钟前
CodeCraft应助Benhnhk21采纳,获得30
8分钟前
9分钟前
Benhnhk21发布了新的文献求助30
9分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
村口的帅老头完成签到 ,获得积分0
10分钟前
10分钟前
gincle完成签到 ,获得积分10
10分钟前
10分钟前
andrele发布了新的文献求助10
10分钟前
11分钟前
11分钟前
积极的台灯完成签到,获得积分10
11分钟前
紫荆完成签到,获得积分10
11分钟前
Johnson完成签到 ,获得积分10
11分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990181
求助须知:如何正确求助?哪些是违规求助? 3532136
关于积分的说明 11256472
捐赠科研通 3271042
什么是DOI,文献DOI怎么找? 1805190
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234