An In-Silico Identification of Anti-CRISPR Proteins by Using Descriptors Derived from the Primary Structures

清脆的 支持向量机 生物信息学 计算机科学 计算生物学 随机森林 背景(考古学) 人工智能 机器学习 鉴定(生物学) 生物 遗传学 基因 植物 古生物学
作者
Sidrah Liaqat,Saiqa Andleeb,Maryum Bibi,Wajid Arshad Abbasi
标识
DOI:10.1109/fit60620.2023.00019
摘要

Genome editing has been revolutionized by the CRISPR-CAS technology. The lack of an off-switch to stop CAS9's activity in the CRISPR-CAS system causes off-target edits and mutations, which in turn cause adversity. Anti-CRISPR (ACR) proteins have been shown to be naturally occurring inhibitors of CAS activity off-switching. The identification of anti-CRISPR proteins has led to the development of additional biotechnological and medicinal techniques. However, ACR's recognition is tough because of its low sequence similarity, lack of homology, and conserved functional domain. In this context, a number of traditional computational and machine-learning techniques based on homology and some restricted features are presently in use. Owing to the unchangeable importance of ACRs, identifying possible ACRs requires a more rigorous and precise methodology than what is currently used, which will raise the number and rate of ACRs that are found. We have used a variety of machine learning models, including Support Vector Machine (SVM), Random Forest (RF), and Extreme Boosting (XGB), to analyze different physio-chemical, compositional, substitutional, and structural characteristics of protein sequences for this specific goal. Upon conducting a comparative performance analysis with existing methods using an external validation dataset and cross-validation over a range of computed metrics, we discovered that SVM with the optimal feature set performed better than the other models and is set up as the central component of ACR-Predictor. Consequently, by increasing the rate of discovery and volume of ACRs with an acceptable margin of success, the study's primary goal was accomplished.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小菜坤发布了新的文献求助10
1秒前
爱静静应助小雨采纳,获得10
1秒前
深情的令发布了新的文献求助10
1秒前
研究僧完成签到,获得积分10
2秒前
vistagy完成签到,获得积分10
2秒前
2秒前
鱼笙完成签到,获得积分10
2秒前
冰凌花开完成签到,获得积分10
3秒前
科研通AI2S应助ffff采纳,获得10
3秒前
沉静的颦完成签到,获得积分10
4秒前
111发布了新的文献求助30
4秒前
欣喜的代容完成签到 ,获得积分10
5秒前
6秒前
7秒前
Solitude完成签到,获得积分10
8秒前
9秒前
Dai完成签到,获得积分10
9秒前
10秒前
沉静的颦发布了新的文献求助10
10秒前
orixero应助无辜的皮皮虾采纳,获得10
10秒前
jackone完成签到,获得积分10
11秒前
Self发布了新的文献求助10
11秒前
YRY发布了新的文献求助20
11秒前
12秒前
13秒前
Aprilapple发布了新的文献求助10
13秒前
13秒前
简qiu发布了新的文献求助10
16秒前
18秒前
20秒前
隐形曼青应助沉静的颦采纳,获得10
21秒前
非鱼发布了新的文献求助10
22秒前
顾矜应助小菜坤采纳,获得10
23秒前
23秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
烟花应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
搜集达人应助科研通管家采纳,获得10
24秒前
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258033
求助须知:如何正确求助?哪些是违规求助? 2899887
关于积分的说明 8307928
捐赠科研通 2569134
什么是DOI,文献DOI怎么找? 1395507
科研通“疑难数据库(出版商)”最低求助积分说明 653107
邀请新用户注册赠送积分活动 630990