An In-Silico Identification of Anti-CRISPR Proteins by Using Descriptors Derived from the Primary Structures

清脆的 支持向量机 生物信息学 计算机科学 计算生物学 随机森林 背景(考古学) 人工智能 机器学习 鉴定(生物学) 生物 遗传学 基因 植物 古生物学
作者
Sidrah Liaqat,Saiqa Andleeb,Maryum Bibi,Wajid Arshad Abbasi
标识
DOI:10.1109/fit60620.2023.00019
摘要

Genome editing has been revolutionized by the CRISPR-CAS technology. The lack of an off-switch to stop CAS9's activity in the CRISPR-CAS system causes off-target edits and mutations, which in turn cause adversity. Anti-CRISPR (ACR) proteins have been shown to be naturally occurring inhibitors of CAS activity off-switching. The identification of anti-CRISPR proteins has led to the development of additional biotechnological and medicinal techniques. However, ACR's recognition is tough because of its low sequence similarity, lack of homology, and conserved functional domain. In this context, a number of traditional computational and machine-learning techniques based on homology and some restricted features are presently in use. Owing to the unchangeable importance of ACRs, identifying possible ACRs requires a more rigorous and precise methodology than what is currently used, which will raise the number and rate of ACRs that are found. We have used a variety of machine learning models, including Support Vector Machine (SVM), Random Forest (RF), and Extreme Boosting (XGB), to analyze different physio-chemical, compositional, substitutional, and structural characteristics of protein sequences for this specific goal. Upon conducting a comparative performance analysis with existing methods using an external validation dataset and cross-validation over a range of computed metrics, we discovered that SVM with the optimal feature set performed better than the other models and is set up as the central component of ACR-Predictor. Consequently, by increasing the rate of discovery and volume of ACRs with an acceptable margin of success, the study's primary goal was accomplished.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助courage采纳,获得30
刚刚
刚刚
litianahang完成签到,获得积分10
1秒前
旺旺旺仔完成签到 ,获得积分10
1秒前
1秒前
Lucas应助ss采纳,获得10
1秒前
2秒前
苏小安发布了新的文献求助10
2秒前
失眠夏山完成签到,获得积分10
3秒前
3秒前
隐形曼青应助hrrypeet采纳,获得10
3秒前
清水发布了新的文献求助10
5秒前
wang发布了新的文献求助10
5秒前
5秒前
笨笨熊发布了新的文献求助10
5秒前
flysky120发布了新的文献求助10
6秒前
6秒前
1111完成签到,获得积分10
6秒前
Linp完成签到,获得积分10
6秒前
沉默的半凡完成签到,获得积分10
6秒前
KAG发布了新的文献求助10
6秒前
7秒前
7秒前
Queena发布了新的文献求助10
7秒前
楼宸发布了新的文献求助10
7秒前
李健的小迷弟应助Steven采纳,获得10
7秒前
杨幂完成签到,获得积分10
7秒前
wufel2完成签到,获得积分10
7秒前
cdh1994应助纳斯达克采纳,获得20
8秒前
prisfanstein发布了新的文献求助10
8秒前
CY完成签到,获得积分10
9秒前
樊尔风完成签到,获得积分10
9秒前
10秒前
aaaa完成签到,获得积分10
10秒前
10秒前
mwm完成签到 ,获得积分10
11秒前
乔乔兔发布了新的文献求助10
11秒前
11秒前
月亮夏的夏完成签到,获得积分10
11秒前
盼盼527完成签到,获得积分10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016344
求助须知:如何正确求助?哪些是违规求助? 3556478
关于积分的说明 11321199
捐赠科研通 3289279
什么是DOI,文献DOI怎么找? 1812421
邀请新用户注册赠送积分活动 887952
科研通“疑难数据库(出版商)”最低求助积分说明 812060