生物矿化
翡翠贻贝
贻贝
化学
羟基化
生物化学
多糖
生物
环境化学
生态学
酶
古生物学
作者
Jingliang Huang,Feng Lin,Chuang Liu,Maoguo Luo
标识
DOI:10.1016/j.jprot.2024.105112
摘要
Ocean acidification causes severe shell dissolution and threats the survival of marine molluscs. The periostracum in molluscs consists of macromolecules such as proteins and polysaccharides, and protects the inner shell layers from dissolution and microbial erosion. Moreover, it serves as the primary template for shell deposition. However, the chemical composition and formation mechanism of the periostracum is largely unknown. In this study, we applied transcriptomic, proteomics, physical, and chemical analysis to unravel the mysteries of the periostracum formation in the green mussel Perna viridis Linnaeus. FTIR analysis showed that the periostracum layer was an organic membrane mainly composed of polysaccharides, lipids, and proteins, similar to that of the shell matrix. Interestingly, the proteomic study identified components enriched in tyrosine and some enzymes that evolved in tyrosine oxidation, indicating that tyrosine oxidation might play an essential role in the periostracum formation. Moreover, comparative transcriptomics suggested that tyrosine-rich proteins were intensively synthesized in the periostracum groove. After being secreted, the periostracum proteins were gradually tanned by oxidation in the seawater, and the level of crosslink increased significantly as revealed by the ATR-FTIR. Our present study sheds light on the chemical composition and putative tanning mechanism of the periostracum layer in bivalve molluscs. SIGNIFICANCE: The periostracum layer, plays an essential role in the initiation of shell biomineralization, the protection of minerals from dissolution for molluscs and especially ocean acidification conditions in the changing global climate. However, the molecular mechanism underlying the periostracum formation is not fully understood. In this study, we revealed that the oxidation and cross-link of tyrosine-rich proteins by tyrosinase are involved in periostracum formation in the green mussel Perna viridis. This study provides some insights into the first step of mussel shell formation and the robust adaptation of P. viridis to diverse habitats. These findings also help to reveal the potential acclimation of bivalves to the projected acidifying seawater.
科研通智能强力驱动
Strongly Powered by AbleSci AI