UltraVCS: Ultra-Fine-Grained Variable-Based Code Slicing for Automated Vulnerability Detection

计算机科学 程序切片 切片 变量(数学) 脆弱性(计算) 编码(集合论) 程序设计语言 计算机安全 计算机图形学(图像) 集合(抽象数据类型) 数学 数学分析
作者
Tongshuai Wu,Liwei Chen,Gewangzi Du,Dan Meng,Gang Shi
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 3986-4000 被引量:4
标识
DOI:10.1109/tifs.2024.3374219
摘要

Detecting vulnerabilities in source code using deep learning models is emerging as a valuable research area. The key issue in using deep learning to detect vulnerabilities is the accurate representation. Current approaches for detecting vulnerabilities in C/C++ programs use functions or lines of code as the unit and only consider the basic syntactic structure of vulnerabilities. Unfortunately, functions and lines of code still have vulnerability-unrelated information, which is redundant for vulnerability features and is not conducive to deep learning models to learn accurate vulnerability patterns. This paper deeply analyzes the essential features of vulnerabilities and attacks. Then, we propose a novel variable-based deep learning vulnerability detection method for C/C++ that is more granular than existing function- or line of code-based vulnerability detection methods. Based on the triggering mechanism of vulnerabilities and typical memory attacks, we propose the concepts of key variables and insecure operations; these are used to propose new rules for determining the center point of code slices with more accurate vulnerability features. We propose the first ultra-fine-grained variable-based code slicing (UltraVCS) method by the new center point, which focuses on the vulnerability-related variable. This method removes as much vulnerability-unrelated information as possible to achieve more accurate vulnerability feature extraction. Experiments show that our approach can generate more code slices, achieve more precise vulnerability representation, and perform better vulnerability detection in open-source projects compared to state-of-the-art methods. Furthermore, we have discovered four zero-day vulnerabilities in real-world application scenarios in open-source projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
goldNAN发布了新的文献求助10
3秒前
哈哈完成签到,获得积分10
4秒前
6秒前
Biom完成签到 ,获得积分10
8秒前
小马甲应助anyunyi采纳,获得10
8秒前
劲秉应助anyunyi采纳,获得10
8秒前
劲秉应助anyunyi采纳,获得10
8秒前
热切菩萨应助anyunyi采纳,获得10
9秒前
热切菩萨应助anyunyi采纳,获得10
9秒前
劲秉应助anyunyi采纳,获得10
9秒前
毛豆应助anyunyi采纳,获得10
9秒前
英姑应助anyunyi采纳,获得10
9秒前
菠萝菠萝哒应助anyunyi采纳,获得10
9秒前
毛豆应助anyunyi采纳,获得10
9秒前
SYLH应助奔跑石小猛采纳,获得50
9秒前
10秒前
王豆豆发布了新的文献求助10
11秒前
Maxine完成签到 ,获得积分10
11秒前
请叫我风吹麦浪应助Aspirin采纳,获得10
12秒前
重要冥茗完成签到,获得积分10
13秒前
Non0完成签到,获得积分10
13秒前
14秒前
15秒前
斯文败类应助twilight采纳,获得50
16秒前
279发布了新的文献求助10
16秒前
无花果应助微笑的之柔采纳,获得10
17秒前
17秒前
18秒前
19秒前
英姑应助天真的迎天采纳,获得10
19秒前
爽酱发布了新的文献求助10
20秒前
wzjs发布了新的文献求助10
20秒前
Hosea发布了新的文献求助10
22秒前
22秒前
逆天小子完成签到,获得积分10
22秒前
韩帅完成签到,获得积分10
23秒前
英姑应助等待的谷波采纳,获得10
24秒前
韩帅发布了新的文献求助10
25秒前
请叫我风吹麦浪应助Aspirin采纳,获得10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466022
求助须知:如何正确求助?哪些是违规求助? 3058969
关于积分的说明 9064256
捐赠科研通 2749385
什么是DOI,文献DOI怎么找? 1508522
科研通“疑难数据库(出版商)”最低求助积分说明 696945
邀请新用户注册赠送积分活动 696664