UltraVCS: Ultra-Fine-Grained Variable-Based Code Slicing for Automated Vulnerability Detection

计算机科学 程序切片 切片 深度学习 钥匙(锁) 源代码 源代码行 人工智能 脆弱性(计算) 脆弱性评估 编码(集合论) 特征(语言学) 漏洞管理 机器学习 点(几何) 关系(数据库) 数据挖掘 安全编码 特征学习 特征提取 静态分析 静态程序分析 计算机安全
作者
Tongshuai Wu,Liwei Chen,Gewangzi Du,Dan Meng,Gang Shi
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 3986-4000 被引量:9
标识
DOI:10.1109/tifs.2024.3374219
摘要

Detecting vulnerabilities in source code using deep learning models is emerging as a valuable research area. The key issue in using deep learning to detect vulnerabilities is the accurate representation. Current approaches for detecting vulnerabilities in C/C++ programs use functions or lines of code as the unit and only consider the basic syntactic structure of vulnerabilities. Unfortunately, functions and lines of code still have vulnerability-unrelated information, which is redundant for vulnerability features and is not conducive to deep learning models to learn accurate vulnerability patterns. This paper deeply analyzes the essential features of vulnerabilities and attacks. Then, we propose a novel variable-based deep learning vulnerability detection method for C/C++ that is more granular than existing function- or line of code-based vulnerability detection methods. Based on the triggering mechanism of vulnerabilities and typical memory attacks, we propose the concepts of key variables and insecure operations; these are used to propose new rules for determining the center point of code slices with more accurate vulnerability features. We propose the first ultra-fine-grained variable-based code slicing (UltraVCS) method by the new center point, which focuses on the vulnerability-related variable. This method removes as much vulnerability-unrelated information as possible to achieve more accurate vulnerability feature extraction. Experiments show that our approach can generate more code slices, achieve more precise vulnerability representation, and perform better vulnerability detection in open-source projects compared to state-of-the-art methods. Furthermore, we have discovered four zero-day vulnerabilities in real-world application scenarios in open-source projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
absb完成签到,获得积分10
2秒前
SciGPT应助顺弟er采纳,获得10
2秒前
struggle完成签到,获得积分10
3秒前
沐浴璐发布了新的文献求助10
3秒前
耳东完成签到 ,获得积分10
3秒前
先知完成签到,获得积分10
4秒前
4秒前
科研通AI6应助皮卡丘比特采纳,获得10
5秒前
李健应助absb采纳,获得10
5秒前
6秒前
struggle发布了新的文献求助10
6秒前
9秒前
penzer完成签到 ,获得积分10
9秒前
草莓发布了新的文献求助10
10秒前
10秒前
10秒前
三哼完成签到,获得积分10
10秒前
Akim应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
黄bb应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
杨静完成签到,获得积分10
12秒前
12秒前
细腻季节完成签到,获得积分10
12秒前
不系舟发布了新的文献求助10
13秒前
dyfsj完成签到,获得积分10
14秒前
15秒前
whc完成签到,获得积分10
15秒前
扮猪吃饲料完成签到,获得积分10
18秒前
xiao发布了新的文献求助10
18秒前
zhong完成签到 ,获得积分10
19秒前
20秒前
小马sad发布了新的文献求助10
21秒前
Wang1991发布了新的文献求助10
22秒前
所所应助dd采纳,获得30
23秒前
烂漫的涫完成签到 ,获得积分10
24秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429