UltraVCS: Ultra-Fine-Grained Variable-Based Code Slicing for Automated Vulnerability Detection

计算机科学 程序切片 切片 变量(数学) 脆弱性(计算) 编码(集合论) 程序设计语言 计算机安全 计算机图形学(图像) 集合(抽象数据类型) 数学分析 数学
作者
Tongshuai Wu,Liwei Chen,Gewangzi Du,Dan Meng,Gang Shi
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 3986-4000 被引量:12
标识
DOI:10.1109/tifs.2024.3374219
摘要

Detecting vulnerabilities in source code using deep learning models is emerging as a valuable research area. The key issue in using deep learning to detect vulnerabilities is the accurate representation. Current approaches for detecting vulnerabilities in C/C++ programs use functions or lines of code as the unit and only consider the basic syntactic structure of vulnerabilities. Unfortunately, functions and lines of code still have vulnerability-unrelated information, which is redundant for vulnerability features and is not conducive to deep learning models to learn accurate vulnerability patterns. This paper deeply analyzes the essential features of vulnerabilities and attacks. Then, we propose a novel variable-based deep learning vulnerability detection method for C/C++ that is more granular than existing function- or line of code-based vulnerability detection methods. Based on the triggering mechanism of vulnerabilities and typical memory attacks, we propose the concepts of key variables and insecure operations; these are used to propose new rules for determining the center point of code slices with more accurate vulnerability features. We propose the first ultra-fine-grained variable-based code slicing (UltraVCS) method by the new center point, which focuses on the vulnerability-related variable. This method removes as much vulnerability-unrelated information as possible to achieve more accurate vulnerability feature extraction. Experiments show that our approach can generate more code slices, achieve more precise vulnerability representation, and perform better vulnerability detection in open-source projects compared to state-of-the-art methods. Furthermore, we have discovered four zero-day vulnerabilities in real-world application scenarios in open-source projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜玫瑰发布了新的文献求助10
1秒前
BPATIENT完成签到,获得积分10
1秒前
科研通AI6应助ll采纳,获得10
1秒前
北小落发布了新的文献求助10
2秒前
传奇3应助yy123采纳,获得10
3秒前
野火197完成签到,获得积分10
3秒前
可爱的函函应助研友_nPPz9n采纳,获得10
3秒前
5秒前
jin发布了新的文献求助20
5秒前
无花果应助Ferry采纳,获得10
6秒前
科研通AI6应助鞭霆采纳,获得30
8秒前
jiangshanshan发布了新的文献求助10
8秒前
小乐应助www采纳,获得10
8秒前
翟晨莹发布了新的文献求助10
8秒前
8秒前
共享精神应助涵涵采纳,获得10
8秒前
111完成签到,获得积分10
8秒前
懦弱的安珊完成签到 ,获得积分10
9秒前
huanfeng完成签到,获得积分10
10秒前
dfghjkl发布了新的文献求助10
11秒前
完美世界应助呆萌忆曼采纳,获得10
11秒前
11秒前
执着卿完成签到,获得积分10
11秒前
12秒前
12秒前
Akim应助忍冬采纳,获得10
12秒前
12秒前
12秒前
yu完成签到,获得积分10
12秒前
Netsky发布了新的文献求助10
13秒前
14秒前
王博士发布了新的文献求助10
15秒前
zty发布了新的文献求助10
16秒前
三七发布了新的文献求助10
16秒前
轩辕白竹完成签到,获得积分10
16秒前
yy123发布了新的文献求助10
17秒前
17秒前
17秒前
桐桐应助周游采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5508548
求助须知:如何正确求助?哪些是违规求助? 4603695
关于积分的说明 14487234
捐赠科研通 4538072
什么是DOI,文献DOI怎么找? 2486805
邀请新用户注册赠送积分活动 1469382
关于科研通互助平台的介绍 1441636