UltraVCS: Ultra-Fine-Grained Variable-Based Code Slicing for Automated Vulnerability Detection

计算机科学 程序切片 切片 变量(数学) 脆弱性(计算) 编码(集合论) 程序设计语言 计算机安全 计算机图形学(图像) 集合(抽象数据类型) 数学 数学分析
作者
Tongshuai Wu,Liwei Chen,Gewangzi Du,Dan Meng,Gang Shi
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 3986-4000 被引量:12
标识
DOI:10.1109/tifs.2024.3374219
摘要

Detecting vulnerabilities in source code using deep learning models is emerging as a valuable research area. The key issue in using deep learning to detect vulnerabilities is the accurate representation. Current approaches for detecting vulnerabilities in C/C++ programs use functions or lines of code as the unit and only consider the basic syntactic structure of vulnerabilities. Unfortunately, functions and lines of code still have vulnerability-unrelated information, which is redundant for vulnerability features and is not conducive to deep learning models to learn accurate vulnerability patterns. This paper deeply analyzes the essential features of vulnerabilities and attacks. Then, we propose a novel variable-based deep learning vulnerability detection method for C/C++ that is more granular than existing function- or line of code-based vulnerability detection methods. Based on the triggering mechanism of vulnerabilities and typical memory attacks, we propose the concepts of key variables and insecure operations; these are used to propose new rules for determining the center point of code slices with more accurate vulnerability features. We propose the first ultra-fine-grained variable-based code slicing (UltraVCS) method by the new center point, which focuses on the vulnerability-related variable. This method removes as much vulnerability-unrelated information as possible to achieve more accurate vulnerability feature extraction. Experiments show that our approach can generate more code slices, achieve more precise vulnerability representation, and perform better vulnerability detection in open-source projects compared to state-of-the-art methods. Furthermore, we have discovered four zero-day vulnerabilities in real-world application scenarios in open-source projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小李发布了新的文献求助10
刚刚
jingmishensi发布了新的文献求助10
1秒前
科研通AI6应助大气怜烟采纳,获得10
1秒前
1秒前
小乐儿~完成签到,获得积分10
1秒前
1秒前
灵巧鑫发布了新的文献求助10
2秒前
zzr123发布了新的文献求助10
2秒前
2秒前
2秒前
曦梦源完成签到,获得积分10
2秒前
共享精神应助飞快的代天采纳,获得10
3秒前
白华苍松发布了新的文献求助10
3秒前
Hyc28441711发布了新的文献求助10
3秒前
一问三不知先生完成签到,获得积分10
3秒前
春风沂水发布了新的文献求助40
4秒前
云端梦境发布了新的文献求助10
4秒前
5秒前
5秒前
奇怪的茶叶菌完成签到,获得积分10
5秒前
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Owen应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
Dali应助科研通管家采纳,获得10
7秒前
7秒前
Owen应助科研通管家采纳,获得10
7秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066