UltraVCS: Ultra-Fine-Grained Variable-Based Code Slicing for Automated Vulnerability Detection

计算机科学 程序切片 切片 变量(数学) 脆弱性(计算) 编码(集合论) 程序设计语言 计算机安全 计算机图形学(图像) 集合(抽象数据类型) 数学分析 数学
作者
Tongshuai Wu,Liwei Chen,Gewangzi Du,Dan Meng,Gang Shi
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 3986-4000 被引量:4
标识
DOI:10.1109/tifs.2024.3374219
摘要

Detecting vulnerabilities in source code using deep learning models is emerging as a valuable research area. The key issue in using deep learning to detect vulnerabilities is the accurate representation. Current approaches for detecting vulnerabilities in C/C++ programs use functions or lines of code as the unit and only consider the basic syntactic structure of vulnerabilities. Unfortunately, functions and lines of code still have vulnerability-unrelated information, which is redundant for vulnerability features and is not conducive to deep learning models to learn accurate vulnerability patterns. This paper deeply analyzes the essential features of vulnerabilities and attacks. Then, we propose a novel variable-based deep learning vulnerability detection method for C/C++ that is more granular than existing function- or line of code-based vulnerability detection methods. Based on the triggering mechanism of vulnerabilities and typical memory attacks, we propose the concepts of key variables and insecure operations; these are used to propose new rules for determining the center point of code slices with more accurate vulnerability features. We propose the first ultra-fine-grained variable-based code slicing (UltraVCS) method by the new center point, which focuses on the vulnerability-related variable. This method removes as much vulnerability-unrelated information as possible to achieve more accurate vulnerability feature extraction. Experiments show that our approach can generate more code slices, achieve more precise vulnerability representation, and perform better vulnerability detection in open-source projects compared to state-of-the-art methods. Furthermore, we have discovered four zero-day vulnerabilities in real-world application scenarios in open-source projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助寒月如雪采纳,获得10
刚刚
1秒前
skier发布了新的文献求助10
1秒前
thousandlong发布了新的文献求助10
2秒前
赘婿应助YY采纳,获得10
2秒前
徐逊发布了新的文献求助10
2秒前
more发布了新的文献求助10
2秒前
3秒前
清爽乐菱应助哇咔咔采纳,获得30
3秒前
GH完成签到,获得积分10
3秒前
3秒前
风趣的从安完成签到 ,获得积分10
4秒前
彭于晏应助酷酷的小张采纳,获得10
4秒前
6秒前
zino发布了新的文献求助10
6秒前
6秒前
6秒前
我的文献发布了新的文献求助20
7秒前
thousandlong完成签到,获得积分10
8秒前
8秒前
奋斗蜗牛发布了新的文献求助10
9秒前
沸羊羊发布了新的文献求助10
9秒前
skier完成签到,获得积分10
9秒前
9秒前
BINGBONG完成签到,获得积分10
10秒前
10秒前
biduoshen完成签到,获得积分10
11秒前
shulei发布了新的文献求助10
11秒前
充电宝应助tomorrow采纳,获得10
11秒前
科研通AI2S应助林柠采纳,获得10
12秒前
fd163c发布了新的文献求助20
12秒前
13秒前
14秒前
bkagyin应助涵泽采纳,获得10
14秒前
wqwqwq完成签到 ,获得积分10
14秒前
15秒前
15秒前
小小人儿完成签到,获得积分20
15秒前
15秒前
寒月如雪发布了新的文献求助10
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126