UltraVCS: Ultra-Fine-Grained Variable-Based Code Slicing for Automated Vulnerability Detection

计算机科学 程序切片 切片 变量(数学) 脆弱性(计算) 编码(集合论) 程序设计语言 计算机安全 计算机图形学(图像) 集合(抽象数据类型) 数学 数学分析
作者
Tongshuai Wu,Liwei Chen,Gewangzi Du,Dan Meng,Gang Shi
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 3986-4000 被引量:12
标识
DOI:10.1109/tifs.2024.3374219
摘要

Detecting vulnerabilities in source code using deep learning models is emerging as a valuable research area. The key issue in using deep learning to detect vulnerabilities is the accurate representation. Current approaches for detecting vulnerabilities in C/C++ programs use functions or lines of code as the unit and only consider the basic syntactic structure of vulnerabilities. Unfortunately, functions and lines of code still have vulnerability-unrelated information, which is redundant for vulnerability features and is not conducive to deep learning models to learn accurate vulnerability patterns. This paper deeply analyzes the essential features of vulnerabilities and attacks. Then, we propose a novel variable-based deep learning vulnerability detection method for C/C++ that is more granular than existing function- or line of code-based vulnerability detection methods. Based on the triggering mechanism of vulnerabilities and typical memory attacks, we propose the concepts of key variables and insecure operations; these are used to propose new rules for determining the center point of code slices with more accurate vulnerability features. We propose the first ultra-fine-grained variable-based code slicing (UltraVCS) method by the new center point, which focuses on the vulnerability-related variable. This method removes as much vulnerability-unrelated information as possible to achieve more accurate vulnerability feature extraction. Experiments show that our approach can generate more code slices, achieve more precise vulnerability representation, and perform better vulnerability detection in open-source projects compared to state-of-the-art methods. Furthermore, we have discovered four zero-day vulnerabilities in real-world application scenarios in open-source projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助felinus采纳,获得10
刚刚
庸俗完成签到,获得积分10
刚刚
科研通AI6应助YYYYZ采纳,获得10
1秒前
3秒前
XIAOJU_U完成签到 ,获得积分10
4秒前
热心鱼发布了新的文献求助10
4秒前
CipherSage应助Quhang采纳,获得10
4秒前
机智的天宇完成签到,获得积分10
5秒前
6秒前
沧沧完成签到,获得积分10
6秒前
6秒前
dann完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
吱唔朱完成签到,获得积分20
9秒前
9秒前
小透明发布了新的文献求助150
10秒前
11秒前
11秒前
12秒前
12秒前
12秒前
12秒前
12秒前
zbzfp发布了新的文献求助10
12秒前
哈哈哈发布了新的文献求助10
13秒前
coc完成签到,获得积分20
13秒前
兰hua发布了新的文献求助10
13秒前
谢大喵发布了新的文献求助10
13秒前
毅诚菌发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
毅诚菌发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637553
求助须知:如何正确求助?哪些是违规求助? 4743563
关于积分的说明 14999628
捐赠科研通 4795653
什么是DOI,文献DOI怎么找? 2562146
邀请新用户注册赠送积分活动 1521595
关于科研通互助平台的介绍 1481573