When nanozymes meet deoxyribonucleic acid: Understanding their interactions and biomedical diagnosis applications

纳米技术 DNA 生物传感器 化学 生化工程 计算生物学 计算机科学 材料科学 生物化学 生物 工程类
作者
Hao Liang,Xinyu Chen,Zhijian Bu,Qinqin Bai,Jinjin Liu,Qingzhen Tian,Zheng Tang,Shu Li,Qiaoqiao Diao,Xiangheng Niu
标识
DOI:10.1002/inmd.20230057
摘要

Abstract As emerging alternatives to natural enzymes, nanoscale materials featuring enzyme‐like catalytic behaviors (nanozymes) exhibit some attractive merits including robust activity, low cost, and easy‐to‐regulate performance. These merits have enabled them to be intensively used in the biomedical field in recent years. To remedy the lack of catalytic selectivity in most nanozymes, deoxyribonucleic acid (DNA) chains with specific recognition functions are utilized to integrate with nanozymes to produce various nanozyme–DNA combinations via adsorption/desorption. In the formed combinations, the DNA component provides the molecular/ionic recognition role, and the nanozyme part offers response with catalytically amplified signals, enabling them to detect analytes and biomarkers selectively and sensitively. To highlight this interesting topic, here we made a critical review of the interactions between nanozymes and DNA and their applications in biosensing and disease diagnosis. First, strategies for the conjugation of DNA chains onto nanozyme surface were introduced briefly. Then, the interactions between DNA and nanozymes were summarized in detail, where flexible modulations of nanozyme activity by DNA adsorption/desorption as well as various factors were analyzed, and potential impacts caused by nanozymes on the recognition characteristics of DNA chains were pointed out. After that, typical applications of DNA‐mediated nanozyme modulation in toxic ion sensing, health risk factor monitoring, and biomedical diagnosis were introduced. In the end, prospects of the combination of nanozymes and DNA chains were presented, and future challenges of the emerging field were also discussed, to attract more interest and effort to advance this promising area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Y.完成签到,获得积分10
2秒前
2秒前
4秒前
lvbitjy完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
zhangzhang发布了新的文献求助10
7秒前
华仔应助氨氯地平采纳,获得10
7秒前
萧然完成签到,获得积分10
7秒前
Bonnienuit完成签到 ,获得积分10
7秒前
小朱发布了新的文献求助10
8秒前
梦田完成签到 ,获得积分10
8秒前
meow完成签到 ,获得积分10
8秒前
8秒前
反方向的钟完成签到,获得积分10
9秒前
9秒前
10秒前
chen完成签到,获得积分10
10秒前
11秒前
犹豫的小土豆完成签到,获得积分10
12秒前
诚心淇发布了新的文献求助10
13秒前
14秒前
14秒前
搜集达人应助beiyoumilu采纳,获得10
15秒前
15秒前
15秒前
图灵桑应助偷狗的小月亮采纳,获得10
16秒前
wang完成签到,获得积分10
16秒前
zhanghang完成签到,获得积分10
17秒前
清爽老九发布了新的文献求助10
17秒前
18秒前
wind发布了新的文献求助50
19秒前
19秒前
科研通AI2S应助诚心淇采纳,获得10
19秒前
19秒前
20秒前
Abel应助小马日常挨打采纳,获得10
20秒前
江洋大盗发布了新的文献求助10
21秒前
咚咚咚完成签到,获得积分20
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443606
求助须知:如何正确求助?哪些是违规求助? 3039866
关于积分的说明 8978309
捐赠科研通 2728270
什么是DOI,文献DOI怎么找? 1496480
科研通“疑难数据库(出版商)”最低求助积分说明 691647
邀请新用户注册赠送积分活动 689175