亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dual-contrast pedagogy for AI literacy in upper elementary schools

对比度(视觉) 读写能力 教育学 对偶(语法数字) 数学教育 心理学 社会学 双语 语言学 计算机科学 哲学 人工智能
作者
Yun Dai
出处
期刊:Learning and Instruction [Elsevier]
卷期号:91: 101899-101899 被引量:27
标识
DOI:10.1016/j.learninstruc.2024.101899
摘要

Advances in artificial intelligence (AI) have highlighted the need to equip young students with basic AI-related knowledge, skills, values, and attitudes. However, pedagogical design for AI literacy remains a critical challenge, especially for upper elementary students aged 10–12. This design-based study had two goals: to develop a pedagogical approach for AI literacy in upper elementary education and to empirically assess this approach through an experiment. One hundred forty-seven sixth graders in an upper elementary school were randomly assigned to a control group (n = 75) and an experimental group (n = 72). Following a theory-informed design convention, we proposed a dual-contrast pedagogical (DCP) approach. This approach centers on human-AI comparisons by integrating analogies and cognitive conflicts. Two teaching examples on machine learning and large language models were provided. The experimental group was taught with the DCP approach, while the control group received conventional direct instruction. Data drawn from assessment tasks and questionnaires were subjected to two-way analyses of variance and covariance. The experimental group demonstrated significantly higher performance in AI knowledge, skills, and ethical awareness. They also exhibited a significant increase in AI learning confidence and intrinsic motivation and a significant decrease in learning anxiety. The DCP approach significantly improved students' learning performance and attitudes, demonstrating its effectiveness in promoting AI literacy. This study highlights the pedagogical value of human-AI comparisons in teaching AI, while contributing to a research agenda on the cognitive and conceptual aspects of AI education.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
14秒前
英姑应助坚定汝燕采纳,获得10
21秒前
我是老大应助科研通管家采纳,获得10
22秒前
ho应助科研通管家采纳,获得10
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
27秒前
欣喜宛亦完成签到 ,获得积分10
35秒前
38秒前
姆姆没买完成签到 ,获得积分0
45秒前
wanci应助xuan采纳,获得10
59秒前
tu完成签到 ,获得积分10
1分钟前
1分钟前
日落发布了新的文献求助10
1分钟前
xuan发布了新的文献求助10
1分钟前
1分钟前
早茶可口完成签到,获得积分10
1分钟前
oleskarabach发布了新的文献求助10
1分钟前
xuan完成签到,获得积分10
1分钟前
1分钟前
子平完成签到 ,获得积分0
1分钟前
田様应助坚定汝燕采纳,获得10
1分钟前
日落发布了新的文献求助10
1分钟前
1分钟前
日落完成签到,获得积分10
2分钟前
2分钟前
2分钟前
qjd发布了新的文献求助10
2分钟前
思源应助科研通管家采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
ho应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
NexusExplorer应助qjd采纳,获得10
2分钟前
积极的觅松完成签到 ,获得积分10
2分钟前
2分钟前
qjd完成签到,获得积分10
2分钟前
2分钟前
茉莉公主完成签到,获得积分20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376359
求助须知:如何正确求助?哪些是违规求助? 4501480
关于积分的说明 14013086
捐赠科研通 4409259
什么是DOI,文献DOI怎么找? 2422122
邀请新用户注册赠送积分活动 1414945
关于科研通互助平台的介绍 1391803