Dual-contrast pedagogy for AI literacy in upper elementary schools

对比度(视觉) 读写能力 教育学 对偶(语法数字) 数学教育 心理学 社会学 双语 语言学 计算机科学 哲学 人工智能
作者
Yun Dai
出处
期刊:Learning and Instruction [Elsevier]
卷期号:91: 101899-101899 被引量:6
标识
DOI:10.1016/j.learninstruc.2024.101899
摘要

Advances in artificial intelligence (AI) have highlighted the need to equip young students with basic AI-related knowledge, skills, values, and attitudes. However, pedagogical design for AI literacy remains a critical challenge, especially for upper elementary students aged 10–12. This design-based study had two goals: to develop a pedagogical approach for AI literacy in upper elementary education and to empirically assess this approach through an experiment. One hundred forty-seven sixth graders in an upper elementary school were randomly assigned to a control group (n = 75) and an experimental group (n = 72). Following a theory-informed design convention, we proposed a dual-contrast pedagogical (DCP) approach. This approach centers on human-AI comparisons by integrating analogies and cognitive conflicts. Two teaching examples on machine learning and large language models were provided. The experimental group was taught with the DCP approach, while the control group received conventional direct instruction. Data drawn from assessment tasks and questionnaires were subjected to two-way analyses of variance and covariance. The experimental group demonstrated significantly higher performance in AI knowledge, skills, and ethical awareness. They also exhibited a significant increase in AI learning confidence and intrinsic motivation and a significant decrease in learning anxiety. The DCP approach significantly improved students' learning performance and attitudes, demonstrating its effectiveness in promoting AI literacy. This study highlights the pedagogical value of human-AI comparisons in teaching AI, while contributing to a research agenda on the cognitive and conceptual aspects of AI education.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Elsa发布了新的文献求助10
1秒前
热爱zx的小陈完成签到,获得积分10
2秒前
Akim应助不吃香菜爱学习采纳,获得10
2秒前
谨慎的寒梦完成签到 ,获得积分10
4秒前
susu发布了新的文献求助10
5秒前
巧乔子完成签到 ,获得积分10
7秒前
入门的橙橙完成签到 ,获得积分10
9秒前
行者无疆完成签到,获得积分10
12秒前
执着玫瑰完成签到,获得积分10
16秒前
小燚完成签到 ,获得积分10
16秒前
修士完成签到 ,获得积分10
18秒前
英姑应助泥巴采纳,获得10
20秒前
宝字盖完成签到,获得积分20
20秒前
CipherSage应助7777采纳,获得10
24秒前
打打应助年轻以寒采纳,获得10
25秒前
25秒前
26秒前
共享精神应助junru采纳,获得10
28秒前
lilx完成签到 ,获得积分20
30秒前
英姑应助xxxx采纳,获得10
30秒前
天天快乐应助阔达莫英采纳,获得10
31秒前
bss完成签到,获得积分10
33秒前
Ulrica发布了新的文献求助10
35秒前
vkl完成签到 ,获得积分10
39秒前
39秒前
zzzz关注了科研通微信公众号
40秒前
HEIKU应助dqq采纳,获得10
41秒前
陶醉凌晴关注了科研通微信公众号
42秒前
Ava应助奋斗天德采纳,获得10
42秒前
junru发布了新的文献求助10
43秒前
45秒前
lilx关注了科研通微信公众号
47秒前
8R60d8应助IAMXC采纳,获得80
47秒前
科研通AI2S应助tuotuo采纳,获得200
48秒前
48秒前
宝字盖发布了新的文献求助10
50秒前
7777发布了新的文献求助10
52秒前
54秒前
科研通AI2S应助狂炫AD钙奶采纳,获得10
54秒前
张天宝真的爱科研完成签到,获得积分10
58秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140205
求助须知:如何正确求助?哪些是违规求助? 2791011
关于积分的说明 7797468
捐赠科研通 2447398
什么是DOI,文献DOI怎么找? 1301879
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194