Stress begets stress: The moderating role of childhood adversity in the relationship between job stress and sleep quality among nurses

心理学 压力源 工作量 职业紧张 多级模型 质量(理念) 压力(语言学) 临床心理学 哲学 语言学 认识论 机器学习 计算机科学 操作系统
作者
Yu Cheng,Xuan Zhang,Ying Wang,Fangxiang Mao,Fenglin Cao
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:348: 345-352 被引量:1
标识
DOI:10.1016/j.jad.2023.12.090
摘要

Nurses exhibit considerable variations in sleep quality and experience high job stress levels. Distal factors, such as childhood adversity, and proximal factors, both influence sleep quality. We investigated the moderating role of childhood adversity with job stress and sleep quality, and whether this aligns with the stress-sensitization or stress-amplification models. The impact of job stressors' total score on sleep quality was analyzed using traditional linear regression models and the extreme gradient boosting machine learning algorithm. Hierarchical regression models examined the moderating role of childhood adversity in the relationship between job stress and sleep quality. An interactive tool was used to visualize the results. Among the dimensions of job stress, “time allocation and workload” strongly correlated with sleep quality, followed by “nursing profession and work problems,” “patient care issues,” “management and interpersonal problems,” and “working environment and equipment problems.” The moderating role of childhood adversity in the relationship between different dimensions of job stressors (except working environment and equipment problems) and sleep quality aligns with the stress-sensitization model. This study was susceptible to recall bias and objective sleep data were unavailable. Cross-sectional study design was used, thus limiting causal inferences. Finally, the moderating effect of childhood adversity on subsequent stress among nurses remains unclear. Childhood adversity and job stress were integrated into a stress-sensitization model, providing a nuanced and specific examination of sleep quality. Healthcare policymakers should focus on job stress and childhood adversity, improve nurses' sleep quality, and ultimately benefit patient care and outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助最幸运的988采纳,获得10
2秒前
健忘水云应助hola采纳,获得10
3秒前
他问问发布了新的文献求助10
3秒前
ppg123发布了新的文献求助10
3秒前
乐观忆灵应助hu采纳,获得10
3秒前
佳小佳发布了新的文献求助10
4秒前
YGYANG发布了新的文献求助10
5秒前
万能图书馆应助蚂虾采纳,获得10
5秒前
bai完成签到 ,获得积分10
5秒前
6秒前
6秒前
LFY完成签到,获得积分10
7秒前
7秒前
8秒前
Gauss完成签到,获得积分0
9秒前
xin完成签到,获得积分10
9秒前
jia完成签到,获得积分20
9秒前
思源应助jiejie采纳,获得30
10秒前
ppg123发布了新的文献求助10
12秒前
Banbor2021完成签到,获得积分10
12秒前
丘比特应助YGYANG采纳,获得10
13秒前
jia发布了新的文献求助10
13秒前
打打应助拉长的念珍采纳,获得10
13秒前
奋斗的元正完成签到,获得积分10
13秒前
bkagyin应助昨叶何草采纳,获得10
13秒前
研友_nxV0x8发布了新的文献求助10
13秒前
15秒前
STEAD完成签到,获得积分10
15秒前
15秒前
上官若男应助chenxing1947采纳,获得10
17秒前
hiou应助haha采纳,获得30
18秒前
lv完成签到,获得积分10
19秒前
ppg123发布了新的文献求助10
22秒前
他问问完成签到,获得积分10
23秒前
HEIKU应助ywhys采纳,获得10
23秒前
发酱完成签到,获得积分10
23秒前
最幸运的988完成签到,获得积分20
23秒前
23秒前
24秒前
NexusExplorer应助Murphy采纳,获得10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312341
求助须知:如何正确求助?哪些是违规求助? 2944981
关于积分的说明 8522464
捐赠科研通 2620767
什么是DOI,文献DOI怎么找? 1433057
科研通“疑难数据库(出版商)”最低求助积分说明 664824
邀请新用户注册赠送积分活动 650187