Depletion of SAM leading to loss of heterochromatin drives muscle stem cell ageing

转甲基 老化 异染色质 表观遗传学 干细胞 多胺 组蛋白 细胞生物学 细胞内 亚精胺 EZH2型 甲基转移酶 生物 甲基化 生物化学 遗传学 染色质 基因 DNA
作者
Jengmin Kang,Daniel I. Benjamin,Soochi Kim,Jayesh S. Salvi,G. K. Dhaliwal,Richard Y. Lam,Armon Goshayeshi,Jamie O. Brett,Ling Liu,Thomas A. Rando
出处
期刊:Nature metabolism [Springer Nature]
卷期号:6 (1): 153-168 被引量:12
标识
DOI:10.1038/s42255-023-00955-z
摘要

The global loss of heterochromatin during ageing has been observed in eukaryotes from yeast to humans, and this has been proposed as one of the causes of ageing. However, the cause of this age-associated loss of heterochromatin has remained enigmatic. Here we show that heterochromatin markers, including histone H3K9 di/tri-methylation and HP1, decrease with age in muscle stem cells (MuSCs) as a consequence of the depletion of the methyl donor S-adenosylmethionine (SAM). We find that restoration of intracellular SAM in aged MuSCs restores heterochromatin content to youthful levels and rejuvenates age-associated features, including DNA damage accumulation, increased cell death, and defective muscle regeneration. SAM is not only a methyl group donor for transmethylation, but it is also an aminopropyl donor for polyamine synthesis. Excessive consumption of SAM in polyamine synthesis may reduce its availability for transmethylation. Consistent with this premise, we observe that perturbation of increased polyamine synthesis by inhibiting spermidine synthase restores intracellular SAM content and heterochromatin formation, leading to improvements in aged MuSC function and regenerative capacity in male and female mice. Together, our studies demonstrate a direct causal link between polyamine metabolism and epigenetic dysregulation during murine MuSC ageing. During ageing, S-adenosylmethionine (SAM) is depleted from muscle stem cells (MuSCs) because of increased synthesis of the polyamine spermidine, leading to loss of heterochromatin and dysfunction of MuSCs. SAM restoration rescues the mouse MuSC defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kevin1018发布了新的文献求助10
刚刚
安详以晴完成签到,获得积分10
1秒前
antirun完成签到,获得积分10
1秒前
Orange应助光亮萤采纳,获得20
2秒前
3秒前
可爱的函函应助KEYANMINGONG采纳,获得10
4秒前
FashionBoy应助超级灰狼采纳,获得10
5秒前
6秒前
灵巧世倌发布了新的文献求助10
7秒前
zbq完成签到,获得积分10
8秒前
8秒前
薰硝壤应助lqy1214采纳,获得150
9秒前
9秒前
因你常乐完成签到,获得积分10
10秒前
Yao完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
GGBOND2024给sb三百问的求助进行了留言
12秒前
万能图书馆应助安古妮稀采纳,获得30
12秒前
行隐完成签到,获得积分10
13秒前
拼搏向上发布了新的文献求助10
14秒前
sutychen发布了新的文献求助10
14秒前
蒋念寒发布了新的文献求助10
15秒前
15秒前
15秒前
Cyber_relic给Cyber_relic的求助进行了留言
16秒前
16秒前
灵巧世倌完成签到,获得积分10
16秒前
roaring发布了新的文献求助30
17秒前
小方完成签到,获得积分10
17秒前
研友_nxV1D8发布了新的文献求助10
17秒前
17秒前
超级灰狼发布了新的文献求助10
18秒前
桐桐应助危机的依柔采纳,获得10
19秒前
Amie发布了新的文献求助10
19秒前
贺兰发布了新的文献求助10
19秒前
in完成签到 ,获得积分10
19秒前
冷酷的向日葵完成签到,获得积分10
19秒前
seven765完成签到,获得积分10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135943
求助须知:如何正确求助?哪些是违规求助? 2786734
关于积分的说明 7779353
捐赠科研通 2442999
什么是DOI,文献DOI怎么找? 1298768
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870