Exploration of cross-border e-commerce and its logistics supply chain innovation and development path for agricultural exports based on deep learning

供应链 计算机科学 产品(数学) 农业 边距(机器学习) 产业组织 路径(计算) 数据库事务 控制(管理) 运筹学 业务 人工智能 营销 机器学习 数学 生态学 几何学 生物 程序设计语言
作者
Lijing Jin
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:9 (1) 被引量:3
标识
DOI:10.2478/amns.2023.2.01529
摘要

Abstract This paper studies the cross-border e-commerce of agricultural products and its logistics supply chain collaborative management approach, the overall transaction mode and basic content, and proposes a cross-border e-commerce supply chain conceptual model. Aiming at the problems of agricultural product supply chains, a method for predicting agricultural product export prices is proposed. The Prophet algorithm under deep learning is utilized to construct the Prophet agricultural product price prediction model for trend, cycle, and holiday terms. Over the introduction of RNN algorithms and LSEM algorithms to optimize the prediction performance of the model, as well as the gradient explosion. On this basis, GRU neural networks are proposed as an improved model of RNN-LSTM. Prediction comparison experiments are designed to empirically analyze agricultural export price prediction and supply chain logistics risk control, and the results of the empirical analysis show that the vegetable export price predicted by using Prophet algorithm during the period of date 2013/4-2013/9 is 2.975, which differs from the actual price by 0.009 yuan, and the margin of error is in the interval of [-0.091,0.014], which is the smallest variation among the three algorithms, which shows that Prophet model has the best performance. After optimizing the FAPSC risk control coefficient, the risk value of supply chain logistics and transportation was successfully reduced from 0.364 to 0.296, and FAPSC effectively minimized the risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狗狗应助跳跃乘风采纳,获得20
1秒前
小油条应助Amai采纳,获得20
1秒前
科研通AI5应助clear采纳,获得10
1秒前
韩金龙完成签到,获得积分10
2秒前
科研通AI2S应助LiShin采纳,获得10
2秒前
希望天下0贩的0应助尘雾采纳,获得10
4秒前
4秒前
12345完成签到,获得积分10
5秒前
Lialilico完成签到,获得积分10
6秒前
Akim应助我必做出来采纳,获得50
6秒前
7秒前
随机起的名完成签到,获得积分10
7秒前
Owen应助努力的小狗屁采纳,获得10
8秒前
8秒前
vuig完成签到 ,获得积分10
8秒前
哈哈哈的一笑完成签到,获得积分10
8秒前
8秒前
Emma完成签到,获得积分10
8秒前
9秒前
9秒前
研友_VZG7GZ应助不吃香菜采纳,获得10
9秒前
huanger完成签到,获得积分10
9秒前
Tayzon完成签到 ,获得积分10
9秒前
我测你码完成签到,获得积分10
9秒前
超级宇宙二踢脚完成签到,获得积分10
10秒前
10秒前
11秒前
大气小新完成签到,获得积分10
11秒前
ILS完成签到 ,获得积分10
11秒前
Orange应助澜生采纳,获得10
12秒前
lin完成签到,获得积分10
13秒前
Ares发布了新的文献求助10
13秒前
13秒前
谭平完成签到 ,获得积分10
13秒前
14秒前
淡定紫菱完成签到,获得积分10
14秒前
所所应助HYH采纳,获得20
14秒前
14秒前
木香完成签到,获得积分10
15秒前
尘雾发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794