Exploration of cross-border e-commerce and its logistics supply chain innovation and development path for agricultural exports based on deep learning

供应链 计算机科学 产品(数学) 农业 边距(机器学习) 产业组织 路径(计算) 数据库事务 控制(管理) 运筹学 业务 人工智能 营销 机器学习 数学 生态学 几何学 生物 程序设计语言
作者
Lijing Jin
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:9 (1) 被引量:3
标识
DOI:10.2478/amns.2023.2.01529
摘要

Abstract This paper studies the cross-border e-commerce of agricultural products and its logistics supply chain collaborative management approach, the overall transaction mode and basic content, and proposes a cross-border e-commerce supply chain conceptual model. Aiming at the problems of agricultural product supply chains, a method for predicting agricultural product export prices is proposed. The Prophet algorithm under deep learning is utilized to construct the Prophet agricultural product price prediction model for trend, cycle, and holiday terms. Over the introduction of RNN algorithms and LSEM algorithms to optimize the prediction performance of the model, as well as the gradient explosion. On this basis, GRU neural networks are proposed as an improved model of RNN-LSTM. Prediction comparison experiments are designed to empirically analyze agricultural export price prediction and supply chain logistics risk control, and the results of the empirical analysis show that the vegetable export price predicted by using Prophet algorithm during the period of date 2013/4-2013/9 is 2.975, which differs from the actual price by 0.009 yuan, and the margin of error is in the interval of [-0.091,0.014], which is the smallest variation among the three algorithms, which shows that Prophet model has the best performance. After optimizing the FAPSC risk control coefficient, the risk value of supply chain logistics and transportation was successfully reduced from 0.364 to 0.296, and FAPSC effectively minimized the risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爆米花应助hzauhzau采纳,获得10
刚刚
1秒前
爆米花应助小刀采纳,获得10
1秒前
阿高完成签到 ,获得积分10
2秒前
Fox发布了新的文献求助10
3秒前
毛123发布了新的文献求助10
3秒前
南风不竞发布了新的文献求助10
4秒前
Billy应助宇智波白哉采纳,获得60
5秒前
5秒前
YingFengLi发布了新的文献求助10
6秒前
陈隆发布了新的文献求助10
7秒前
某欣完成签到 ,获得积分20
7秒前
8秒前
张小兔啊完成签到,获得积分10
8秒前
小马甲应助Fox采纳,获得10
8秒前
9秒前
英俊的铭应助sss采纳,获得10
10秒前
sxpab发布了新的文献求助10
10秒前
12秒前
hzauhzau发布了新的文献求助10
12秒前
傲娇文博发布了新的文献求助10
13秒前
robo_t_g完成签到,获得积分10
16秒前
17秒前
汉堡包应助zzr采纳,获得10
17秒前
18秒前
YingFengLi完成签到,获得积分10
18秒前
可爱的函函应助大海采纳,获得10
18秒前
杨凤艳发布了新的文献求助80
19秒前
21秒前
22秒前
23秒前
liang发布了新的文献求助30
23秒前
liuqian完成签到,获得积分10
24秒前
24秒前
英俊的铭应助柯小啦采纳,获得10
26秒前
28秒前
自信的孱发布了新的文献求助10
29秒前
小刀发布了新的文献求助10
29秒前
布丁发布了新的文献求助10
30秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260219
求助须知:如何正确求助?哪些是违规求助? 2901451
关于积分的说明 8315734
捐赠科研通 2571024
什么是DOI,文献DOI怎么找? 1396784
科研通“疑难数据库(出版商)”最低求助积分说明 653580
邀请新用户注册赠送积分活动 631997