Vision transformer-based electronic nose for enhanced mixed gases classification

电子鼻 支持向量机 特征提取 二元分类 计算机科学 人工神经网络 数据挖掘 人工智能 模式识别(心理学)
作者
Haiying Du,Jie Shen,Jing Wang,Qingyu Li,Long Zhao,Wanmin He,Xianrong Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (6): 066008-066008 被引量:1
标识
DOI:10.1088/1361-6501/ad3306
摘要

Abstract The classification of mixed gases is one of the major functions of the electronic nose. To address the challenges associated with complex feature construction and inadequate feature extraction in gas classification, we propose a classification model for gas mixtures based on the vision transformer (ViT). The whole-process signals of the sensor array are taken as input signals in the proposed classification model, and self-attention mechanism is employed for the fusion of global information and adaptive feature extraction to make full use of the dependence of responses at different stages of the whole-process signals to improve the model’s classification accuracy. Our model exhibited a remarkable accuracy (96.66%) using a dataset containing acetone, methanol, ammonia, and their binary mixtures. In comparison, experiments conducted by support vector machine and a one-dimensional deep convolutional neural network model demonstrated classification accuracy of 90.56% and 92.75%, respectively. Experimental results indicate that the ViT gas classification model can be effectively combined with multi-channel time series data from the sensor array using the self-attention mechanism, thereby improving the accuracy of mixed gases classification. This advancement can be expected to become a standard method for classifying mixed gases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玉玉发布了新的文献求助10
2秒前
充电宝应助张信采纳,获得10
2秒前
gsx关闭了gsx文献求助
4秒前
手机完成签到,获得积分10
4秒前
晚菘完成签到,获得积分10
4秒前
10秒前
科研通AI2S应助QRE采纳,获得10
11秒前
大模型应助QRE采纳,获得10
11秒前
14秒前
curtisness应助汕头凯奇采纳,获得10
14秒前
春春完成签到,获得积分10
15秒前
酷波er应助hanemil采纳,获得10
16秒前
17秒前
春春发布了新的文献求助10
18秒前
20秒前
孤独丹秋完成签到,获得积分10
20秒前
kk发布了新的文献求助10
22秒前
Lucas应助春春采纳,获得10
22秒前
csyou完成签到,获得积分10
23秒前
28秒前
curtisness应助巨鱼采纳,获得10
33秒前
兴奋的乐巧完成签到,获得积分10
33秒前
HS完成签到 ,获得积分10
34秒前
songyl完成签到,获得积分20
37秒前
llllllll完成签到,获得积分10
38秒前
41秒前
44秒前
Hello应助user_huang采纳,获得10
45秒前
46秒前
songyl发布了新的文献求助10
49秒前
ff发布了新的文献求助10
49秒前
50秒前
噜咔完成签到 ,获得积分10
51秒前
52秒前
大个应助花开四海采纳,获得10
52秒前
54秒前
丘比特应助Kannan采纳,获得10
54秒前
chslj发布了新的文献求助10
55秒前
56秒前
Zsc发布了新的文献求助10
57秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267792
求助须知:如何正确求助?哪些是违规求助? 2907197
关于积分的说明 8340871
捐赠科研通 2577894
什么是DOI,文献DOI怎么找? 1401256
科研通“疑难数据库(出版商)”最低求助积分说明 655013
邀请新用户注册赠送积分活动 634036