清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

STERN: Attention-driven Spatial Transformer Network for abnormality detection in chest X-ray images

计算机科学 人工智能 感兴趣区域 分类器(UML) 模式识别(心理学) 变压器 计算机视觉 机器学习 量子力学 物理 电压
作者
Joana Rocha,Sofia Cardoso Pereira,João Pedrosa,Aurélio Campilho,Ana Maria Mendonça
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:147: 102737-102737
标识
DOI:10.1016/j.artmed.2023.102737
摘要

Chest X-ray scans are frequently requested to detect the presence of abnormalities, due to their low-cost and non-invasive nature. The interpretation of these images can be automated to prioritize more urgent exams through deep learning models, but the presence of image artifacts, e.g. lettering, often generates a harmful bias in the classifiers and an increase of false positive results. Consequently, healthcare would benefit from a system that selects the thoracic region of interest prior to deciding whether an image is possibly pathologic. The current work tackles this binary classification exercise, in which an image is either normal or abnormal, using an attention-driven and spatially unsupervised Spatial Transformer Network (STERN), that takes advantage of a novel domain-specific loss to better frame the region of interest. Unlike the state of the art, in which this type of networks is usually employed for image alignment, this work proposes a spatial transformer module that is used specifically for attention, as an alternative to the standard object detection models that typically precede the classifier to crop out the region of interest. In sum, the proposed end-to-end architecture dynamically scales and aligns the input images to maximize the classifier’s performance, by selecting the thorax with translation and non-isotropic scaling transformations, and thus eliminating artifacts. Additionally, this paper provides an extensive and objective analysis of the selected regions of interest, by proposing a set of mathematical evaluation metrics. The results indicate that the STERN achieves similar results to using YOLO-cropped images, with reduced computational cost and without the need for localization labels. More specifically, the system is able to distinguish abnormal frontal images from the CheXpert dataset, with a mean AUC of 85.67% - a 2.55% improvement vs. the 0.98% improvement achieved by the YOLO-based counterpart in comparison to a standard baseline classifier. At the same time, the STERN approach requires less than 2/3 of the training parameters, while increasing the inference time per batch in less than 2 ms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨言无殇完成签到,获得积分10
56秒前
huvy完成签到 ,获得积分10
1分钟前
内向的白玉完成签到 ,获得积分10
3分钟前
3分钟前
翟半仙发布了新的文献求助10
3分钟前
4分钟前
turui完成签到 ,获得积分10
4分钟前
jyy应助晶杰采纳,获得10
4分钟前
脑洞疼应助科研通管家采纳,获得10
5分钟前
翟半仙发布了新的文献求助20
5分钟前
fuueer完成签到 ,获得积分10
5分钟前
lixuebin完成签到 ,获得积分10
5分钟前
上官若男应助LJYang采纳,获得30
5分钟前
翟半仙完成签到,获得积分10
5分钟前
gy完成签到,获得积分10
6分钟前
华仔应助去去去去采纳,获得30
7分钟前
7分钟前
7分钟前
去去去去发布了新的文献求助30
7分钟前
方琼燕完成签到 ,获得积分10
8分钟前
段誉完成签到 ,获得积分10
8分钟前
yanhua完成签到,获得积分20
8分钟前
8分钟前
桐桐应助Mine采纳,获得10
8分钟前
8分钟前
8分钟前
Mine发布了新的文献求助10
8分钟前
9分钟前
Ava应助Mine采纳,获得50
9分钟前
晶杰发布了新的文献求助10
10分钟前
hongxuezhi完成签到,获得积分10
11分钟前
11分钟前
Mine发布了新的文献求助50
11分钟前
晶杰完成签到 ,获得积分10
11分钟前
大个应助雅樱采纳,获得10
11分钟前
Hello应助要减肥的婷冉采纳,获得10
12分钟前
要减肥的婷冉完成签到,获得积分10
12分钟前
12分钟前
Mine完成签到,获得积分10
12分钟前
12分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142742
求助须知:如何正确求助?哪些是违规求助? 2793633
关于积分的说明 7807045
捐赠科研通 2449903
什么是DOI,文献DOI怎么找? 1303531
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601335