STERN: Attention-driven Spatial Transformer Network for abnormality detection in chest X-ray images

计算机科学 人工智能 感兴趣区域 分类器(UML) 模式识别(心理学) 变压器 计算机视觉 机器学习 物理 量子力学 电压
作者
Joana Rocha,Sofia Cardoso Pereira,João Pedrosa,Aurélio Campilho,Ana Maria Mendonça
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:147: 102737-102737 被引量:5
标识
DOI:10.1016/j.artmed.2023.102737
摘要

Chest X-ray scans are frequently requested to detect the presence of abnormalities, due to their low-cost and non-invasive nature. The interpretation of these images can be automated to prioritize more urgent exams through deep learning models, but the presence of image artifacts, e.g. lettering, often generates a harmful bias in the classifiers and an increase of false positive results. Consequently, healthcare would benefit from a system that selects the thoracic region of interest prior to deciding whether an image is possibly pathologic. The current work tackles this binary classification exercise, in which an image is either normal or abnormal, using an attention-driven and spatially unsupervised Spatial Transformer Network (STERN), that takes advantage of a novel domain-specific loss to better frame the region of interest. Unlike the state of the art, in which this type of networks is usually employed for image alignment, this work proposes a spatial transformer module that is used specifically for attention, as an alternative to the standard object detection models that typically precede the classifier to crop out the region of interest. In sum, the proposed end-to-end architecture dynamically scales and aligns the input images to maximize the classifier’s performance, by selecting the thorax with translation and non-isotropic scaling transformations, and thus eliminating artifacts. Additionally, this paper provides an extensive and objective analysis of the selected regions of interest, by proposing a set of mathematical evaluation metrics. The results indicate that the STERN achieves similar results to using YOLO-cropped images, with reduced computational cost and without the need for localization labels. More specifically, the system is able to distinguish abnormal frontal images from the CheXpert dataset, with a mean AUC of 85.67% - a 2.55% improvement vs. the 0.98% improvement achieved by the YOLO-based counterpart in comparison to a standard baseline classifier. At the same time, the STERN approach requires less than 2/3 of the training parameters, while increasing the inference time per batch in less than 2 ms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Jasper应助清晨采纳,获得10
3秒前
幽默翠桃发布了新的文献求助10
4秒前
我是老大应助刘一鸣采纳,获得10
6秒前
可乐完成签到,获得积分10
7秒前
香蕉觅云应助唱跳双c采纳,获得30
7秒前
香蕉觅云应助张张采纳,获得30
7秒前
9秒前
熊猫小肿完成签到,获得积分10
9秒前
kai完成签到,获得积分10
11秒前
宋静发布了新的文献求助30
13秒前
14秒前
Yuan完成签到,获得积分10
17秒前
wanci应助小张同学采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
18秒前
彭于晏应助科研通管家采纳,获得10
18秒前
充电宝应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
18秒前
19秒前
CHENG完成签到,获得积分10
19秒前
故事的小红花完成签到,获得积分10
19秒前
每天都要开心完成签到,获得积分10
20秒前
我是老大应助水菜泽子采纳,获得10
20秒前
希望天下0贩的0应助nick采纳,获得30
20秒前
liuda完成签到,获得积分10
21秒前
21秒前
奶黄包应助幽默翠桃采纳,获得10
22秒前
傻傻发布了新的文献求助10
22秒前
张张发布了新的文献求助30
23秒前
行舟完成签到 ,获得积分10
24秒前
文艺的金针菇完成签到 ,获得积分10
26秒前
bfr完成签到,获得积分10
26秒前
27秒前
卡比兽本兽完成签到,获得积分10
27秒前
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950968
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081568
捐赠科研通 3226849
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868089
科研通“疑难数据库(出版商)”最低求助积分说明 800993