STERN: Attention-driven Spatial Transformer Network for abnormality detection in chest X-ray images

计算机科学 人工智能 感兴趣区域 分类器(UML) 模式识别(心理学) 变压器 计算机视觉 机器学习 物理 量子力学 电压
作者
Joana Rocha,Sofia Cardoso Pereira,João Pedrosa,Aurélio Campilho,Ana Maria Mendonça
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:147: 102737-102737
标识
DOI:10.1016/j.artmed.2023.102737
摘要

Chest X-ray scans are frequently requested to detect the presence of abnormalities, due to their low-cost and non-invasive nature. The interpretation of these images can be automated to prioritize more urgent exams through deep learning models, but the presence of image artifacts, e.g. lettering, often generates a harmful bias in the classifiers and an increase of false positive results. Consequently, healthcare would benefit from a system that selects the thoracic region of interest prior to deciding whether an image is possibly pathologic. The current work tackles this binary classification exercise, in which an image is either normal or abnormal, using an attention-driven and spatially unsupervised Spatial Transformer Network (STERN), that takes advantage of a novel domain-specific loss to better frame the region of interest. Unlike the state of the art, in which this type of networks is usually employed for image alignment, this work proposes a spatial transformer module that is used specifically for attention, as an alternative to the standard object detection models that typically precede the classifier to crop out the region of interest. In sum, the proposed end-to-end architecture dynamically scales and aligns the input images to maximize the classifier’s performance, by selecting the thorax with translation and non-isotropic scaling transformations, and thus eliminating artifacts. Additionally, this paper provides an extensive and objective analysis of the selected regions of interest, by proposing a set of mathematical evaluation metrics. The results indicate that the STERN achieves similar results to using YOLO-cropped images, with reduced computational cost and without the need for localization labels. More specifically, the system is able to distinguish abnormal frontal images from the CheXpert dataset, with a mean AUC of 85.67% - a 2.55% improvement vs. the 0.98% improvement achieved by the YOLO-based counterpart in comparison to a standard baseline classifier. At the same time, the STERN approach requires less than 2/3 of the training parameters, while increasing the inference time per batch in less than 2 ms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
sw98318完成签到,获得积分10
1秒前
impala完成签到,获得积分10
1秒前
1秒前
欣喜访旋发布了新的文献求助10
1秒前
朱江涛完成签到 ,获得积分10
2秒前
角鸮完成签到,获得积分10
2秒前
zly完成签到 ,获得积分10
3秒前
雨霧雲完成签到,获得积分10
3秒前
qnqqq完成签到 ,获得积分10
4秒前
健壮的涑发布了新的文献求助10
4秒前
5秒前
5秒前
秋山伊夫完成签到,获得积分10
5秒前
入门的橙橙完成签到 ,获得积分10
5秒前
BONBON发布了新的文献求助10
6秒前
8秒前
TOM完成签到,获得积分10
8秒前
隐形曼青应助欣喜访旋采纳,获得10
9秒前
852应助Millie采纳,获得10
9秒前
龍Ryu完成签到,获得积分10
10秒前
内向凌兰发布了新的文献求助10
11秒前
伍秋望完成签到,获得积分10
11秒前
12秒前
13秒前
跳跃发布了新的文献求助10
14秒前
持卿应助宗磬采纳,获得20
14秒前
14秒前
花生油炒花生米完成签到 ,获得积分10
14秒前
Riki完成签到,获得积分10
16秒前
虚幻白玉发布了新的文献求助10
16秒前
德行天下完成签到,获得积分10
16秒前
Jenny应助lan采纳,获得10
17秒前
fztnh完成签到,获得积分10
17秒前
上官若男应助lyz666采纳,获得10
17秒前
顾念完成签到 ,获得积分10
17秒前
277发布了新的文献求助10
18秒前
小二郎应助GCD采纳,获得10
19秒前
hhhhhh完成签到 ,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808