Reconstructing brain functional networks through identifiability and Deep Learning

可识别性 人工智能 公制(单位) 脑电图 模式识别(心理学) 先验与后验 计算机科学 数学 机器学习 神经科学 心理学 哲学 运营管理 认识论 经济
作者
Massimiliano Zanin,Tuba Aktürk,Ebru Yıldırım,Deniz Yerlikaya,Görsev Yener,Bahar Güntekin
出处
期刊:Network neuroscience [MIT Press]
卷期号:8 (1): 241-259
标识
DOI:10.1162/netn_a_00353
摘要

Abstract We propose a novel approach for the reconstruction of functional networks representing brain dynamics based on the idea that the coparticipation of two brain regions in a common cognitive task should result in a drop in their identifiability, or in the uniqueness of their dynamics. This identifiability is estimated through the score obtained by deep learning models in supervised classification tasks and therefore requires no a priori assumptions about the nature of such coparticipation. The method is tested on EEG recordings obtained from Alzheimer’s and Parkinson’s disease patients, and matched healthy volunteers, for eyes-open and eyes-closed resting–state conditions, and the resulting functional networks are analysed through standard topological metrics. Both groups of patients are characterised by a reduction in the identifiability of the corresponding EEG signals, and by differences in the patterns that support such identifiability. Resulting functional networks are similar, but not identical to those reconstructed by using a correlation metric. Differences between control subjects and patients can be observed in network metrics like the clustering coefficient and the assortativity in different frequency bands. Differences are also observed between eyes open and closed conditions, especially for Parkinson’s disease patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛牛发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
文静的谷菱完成签到,获得积分10
1秒前
凡仔完成签到,获得积分20
1秒前
超级绫完成签到,获得积分0
2秒前
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
zhou完成签到,获得积分10
2秒前
所所应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得50
2秒前
华仔应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
张益萌应助科研通管家采纳,获得30
3秒前
ding应助科研通管家采纳,获得10
3秒前
小灰灰应助科研通管家采纳,获得10
3秒前
机智的尔芙完成签到,获得积分10
3秒前
3秒前
chun完成签到,获得积分10
3秒前
是木易呀应助科研通管家采纳,获得10
3秒前
模糊中正应助科研通管家采纳,获得30
3秒前
大个应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
岳先森发布了新的文献求助10
4秒前
狄谷南完成签到,获得积分10
4秒前
打打应助现在毕业采纳,获得10
4秒前
毛豆应助xin采纳,获得10
6秒前
6秒前
6秒前
aaaaa发布了新的文献求助10
6秒前
喻紫寒发布了新的文献求助10
6秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304906
求助须知:如何正确求助?哪些是违规求助? 2938914
关于积分的说明 8490531
捐赠科研通 2613380
什么是DOI,文献DOI怎么找? 1427374
科研通“疑难数据库(出版商)”最低求助积分说明 662952
邀请新用户注册赠送积分活动 647574